6 resultados para C pool

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have identified a mammalian protein called GIPC (for GAIP interacting protein, C terminus), which has a central PDZ domain and a C-terminal acyl carrier protein (ACP) domain. The PDZ domain of GIPC specifically interacts with RGS-GAIP, a GTPase-activating protein (GAP) for Gαi subunits recently localized on clathrin-coated vesicles. Analysis of deletion mutants indicated that the PDZ domain of GIPC specifically interacts with the C terminus of GAIP (11 amino acids) in the yeast two-hybrid system and glutathione S-transferase (GST)-GIPC pull-down assays, but GIPC does not interact with other members of the RGS (regulators of G protein signaling) family tested. This finding is in keeping with the fact that the C terminus of GAIP is unique and possesses a modified C-terminal PDZ-binding motif (SEA). By immunoblotting of membrane fractions prepared from HeLa cells, we found that there are two pools of GIPC–a soluble or cytosolic pool (70%) and a membrane-associated pool (30%). By immunofluorescence, endogenous and GFP-tagged GIPC show both a diffuse and punctate cytoplasmic distribution in HeLa cells reflecting, respectively, the existence of soluble and membrane-associated pools. By immunoelectron microscopy the membrane pool of GIPC is associated with clusters of vesicles located near the plasma membrane. These data provide direct evidence that the C terminus of a RGS protein is involved in interactions specific for a given RGS protein and implicates GAIP in regulation of additional functions besides its GAP activity. The location of GIPC together with its binding to GAIP suggest that GAIP and GIPC may be components of a G protein-coupled signaling complex involved in the regulation of vesicular trafficking. The presence of an ACP domain suggests a putative function for GIPC in the acylation of vesicle-bound proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the effect of the cholinergic agonist carbachol on the spontaneous release of glutamate in cultured rat hippocampal cells. Spontaneous excitatory postsynaptic currents (sEPSCs) through glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type channels were recorded by means of the patch-clamp technique. Carbachol increased the frequency of sEPSCs in a concentration-dependent manner. The kinetic properties of the sEPSCs and the amplitude distribution histograms were not affected by carbachol, arguing for a presynaptic site of action. This was confirmed by measuring the turnover of the synaptic vesicular pool by means of the fluorescent dye FM 1–43. The carbachol-induced increase in sEPSC frequency was not mimicked by nicotine, but could be blocked by atropine or by pirenzepine, a muscarinic cholinergic receptor subtype M1 antagonist. Intracellular Ca2+ signals recorded with the fluorescent probe Fluo-3 indicated that carbachol transiently increased intracellular Ca2+ concentration. Since, however, carbachol still enhanced the sEPSC frequency in bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetate-loaded cells, this effect could not be attributed to the rise in intracellular Ca2+ concentration. On the other hand, the protein kinase inhibitor staurosporine as well as a down-regulation of protein kinase C by prolonged treatment of the cells with 4β-phorbol 12-myristate 13-acetate inhibited the carbachol effect. This argues for an involvement of protein kinase C in presynaptic regulation of spontaneous glutamate release. Adenosine, which inhibits synaptic transmission, suppressed the carbachol-induced stimulation of sEPSCs by a G protein-dependent mechanism activated by presynaptic A1-receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The product of the c-abl protooncogene is a nonreceptor tyrosine kinase found in both the cytoplasm and the nucleus. We report herein that cell adhesion regulates the kinase activity and subcellular localization of c-Abl. When fibroblastic cells are detached from the extracellular matrix, kinase activity of both cytoplasmic and nuclear c-Abl decreases, but there is no detectable alteration in the subcellular distribution. Upon adhesion to the extracellular matrix protein fibronectin, a transient recruitment of a subset of c-Abl to early focal contacts is observed coincident with the export of c-Abl from the nucleus to the cytoplasm. The cytoplasmic pool of c-Abl is reactivated within 5 min of adhesion, but the nuclear c-Abl is reactivated after 30 min, correlating closely with its return to the nucleus and suggesting that the active nuclear c-Abl originates in the cytoplasm. In quiescent cells where nuclear c-Abl activity is low, the cytoplasmic c-Abl is similarly regulated by adhesion but the nuclear c-Abl is not activated upon cell attachment. These results show that c-Abl activation requires cell adhesion and that this tyrosine kinase can transmit integrin signals to the nucleus where it may function to integrate adhesion and cell cycle signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surfactant protein C (SP-C) gene encodes an extremely hydrophobic, 4-kDa peptide produced by alveolar epithelial cells in the lung. To discern the role of SP-C in lung function, SP-C-deficient (−/−) mice were produced. The SP-C (−/−) mice were viable at birth and grew normally to adulthood without apparent pulmonary abnormalities. SP-C mRNA was not detected in the lungs of SP-C (−/−) mice, nor was mature SP-C protein detected by Western blot of alveolar lavage from SP-C (−/−) mice. The levels of the other surfactant proteins (A, B, D) in alveolar lavage were comparable to those in wild-type mice. Surfactant pool sizes, surfactant synthesis, and lung morphology were similar in SP-C (−/−) and SP-C (+/+) mice. Lamellar bodies were present in SP-C (−/−) type II cells, and tubular myelin was present in the alveolar lumen. Lung mechanics studies demonstrated abnormalities in lung hysteresivity (a term used to reflect the mechanical coupling between energy dissipative forces and tissue-elastic properties) at low, positive-end, expiratory pressures. The stability of captive bubbles with surfactant from the SP-C (−/−) mice was decreased significantly, indicating that SP-C plays a role in the stabilization of surfactant at low lung volumes, a condition that may accompany respiratory distress syndrome in infants and adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RNA and ribonuclease-resistant RNA analogs that bound and neutralized Rous sarcoma virus (RSV) were isolated from a large pool of random sequences by multiple cycles of in vitro selection using infectious viral particles. The selected RNA pool of RSV-binding sequences at a concentration of 0.16 microM completely neutralized the virus. Of 19 sequences cloned from the selected pool, 5 inhibited RSV infection. The selected RNA and RNA analogs were shown to neutralize RSV by interacting with the virus, rather than by adversely affecting the host cells. The selection of the anti-RSV RNA and RNA analogs by intact virions immediately suggests the potential application of this approach to develop RNA and RNA analogs as inhibitors of other viruses such as human immunodeficiency virus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that protein phosphorylation plays an important role in the sorting and assembly of tight junctions. We have now examined in detail the role of protein kinases in intercellular junction biogenesis by using a combination of highly specific and broad-spectrum inhibitors that act by independent mechanisms. Our data indicate that protein kinase C (PKC) is required for the proper assembly of tight junctions. Low concentrations of the specific inhibitor of PKC, calphostin C, markedly inhibited development of transepithelial electrical resistance, a functional measure of tight-junction biogenesis. The effect of PKC inhibitors on the development of tight junctions, as measured by resistance, was paralleled by a delay in the sorting of the tight-junction protein, zona occludens 1 (ZO-1), to the tight junction. The assembly of desmosomes and the adherens junction were not detectably affected, as determined by immunocytochemical analysis. In addition, ZO-1 was phosphorylated subsequent to the initiation of cell-cell contact, and treatment with calphostin C prevented approximately 85% of the phosphorylation increase. Furthermore, in vitro measurements indicate that ZO-1 may be a direct target of PKC. Moreover, membrane-associated PKC activity more than doubled during junction assembly, and immunocytochemical analysis revealed a pool of PKC zeta that appeared to colocalize with ZO-1 at the tight junction. A preformed complex containing ZO-1, ZO-2, p130, as well as 330- and 65-kDa phosphoproteins was detected by coimmunoprecipitation in both the presence and absence of cell-cell contact. Identity of the 330- and 65-kDa phosphoproteins remains to be determined, but the 65-kDa protein may be occludin. The mass of this complex and the incorporation of ZO-1 into the Triton X-100-insoluble cytoskeleton were not PKC dependent.