4 resultados para Butterflies

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of the continuum between geographic races and species provide the clearest insights into the causes of speciation. Here we report on mate choice and hybrid viability experiments in a pair of warningly colored butterflies, Heliconius erato and Heliconius himera, that maintain their genetic integrity in the face of hybridization. Hybrid sterility and inviability have been unimportant in the early stages of speciation of these two Heliconius. We find no evidence of reduced fecundity, egg hatch, or larval survival nor increases in developmental time in three generations of hybrid crosses. Instead, speciation in this pair appears to have been catalyzed by the association of strong mating preferences with divergence in warning coloration and ecology. In mate choice experiments, matings between the two species are a tenth as likely as matings within species. F1 hybrids of both sexes mate frequently with both pure forms. However, male F1 progeny from crosses between H. himera mothers and H. erato fathers have somewhat reduced mating success. The strong barrier to gene flow provided by divergence in mate preference is probably enhanced by frequency-dependent predation against hybrids similar to the type known to occur across interracial hybrid zones of H. erato. In addition, the transition between this pair falls at the boundary between wet and dry forest, and rare hybrids may also be selected against because they are poorly adapted to either biotope. These results add to a growing body of evidence that challenge the importance of genomic incompatibilities in the earliest stages of speciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fall migratory monarch butterflies, tested for their directional responses to magnetic cues under three conditions, amagnetic, normal, and reversed magnetic fields, showed three distinct patterns. In the absence of a magnetic field, monarchs lacked directionality as a group. In the normal magnetic field, monarchs oriented to the southwest with a group pattern typical for migrants. When the horizontal component of the magnetic field was reversed, the butterflies oriented to the northeast. In contrast, nonmigratory monarchs lacked directionality in the normal magnetic field. The results are a direct demonstration of magnetic compass orientation in migratory insects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Each year, millions of monarch butterflies from eastern North America migrate to overwinter in 10–13 discrete colonies located in the Oyamel forests of central Mexico. For decades efforts to track monarch migration have relied on observations and tag-recapture methods, culminating with the discovery of the wintering colonies in 1975. Monarch tag returns from Mexico, however, are few and primarily from two accessible colonies, and therefore tag-recapture techniques have not quantified natal origins or distinctiveness among monarch populations at wintering sites. Such information would be invaluable in the conservation of the monarch and its migration phenomenon since the wintering sites currently are threatened by habitat alteration. Here we show that stable hydrogen (δD) and carbon (δ13C) isotope ratios of wintering monarchs can be used to evaluate natal origins on the summer breeding range. Stable-hydrogen and carbon isotopic values of 597 wintering monarchs from 13 wintering roost sites were compared with isotopic patterns measured in individuals at natal sites across their breeding range over a single migration cycle. We determined that all monarch wintering colonies were composed of individuals originating mainly from the Midwest, United States, thereby providing evidence for a panmictic model of wintering colony composition. However, two colonies showed more northerly origins, suggesting possible priority colonies for conservation efforts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surveys of butterfly and moth diversity in tropical forest fragments suggest that nocturnality confers a dispersal, and possibly a survival, advantage. The butterfly faunas of smaller fragments were depauperate; in contrast, the species richness of nocturnal moths was similar in all fragments and even in pasture. The lack of correlation between butterfly and moth species richness among fragments (r2 = 0.005) is best explained by movements of moths at night when ambient conditions in forest and pasture are most similar; butterflies face substantial daytime temperature, humidity, and solar radiation barriers. This interpretation is supported by information on birds, beetles, and bats.