2 resultados para Bumetanide
em National Center for Biotechnology Information - NCBI
Resumo:
This study aimed to characterize the cellular pathways along which nitric oxide (NO) stimulates renin secretion from the kidney. Using the isolated perfused rat kidney model we found that renin secretion stimulated 4- to 8-fold by low perfusion pressure (40 mmHg), by macula densa inhibition (100 μmol/liter of bumetanide), and by adenylate cyclase activation (3 nmol/liter of isoproterenol) was markedly attenuated by the NO synthase inhibitor nitro-l-arginine methyl ester (l-Name) (1 mM) and that the inhibition by l-Name was compensated by the NO-donor sodium nitroprusside (SNP) (10 μmol/liter). Similarly, inhibition of cAMP degradation by blockade of phosphodiesterase 1 (PDE-1) (20 μmol/liter of 8-methoxymethyl-1-methyl-3-(2-methylpropyl)xanthine) or of PDE-4 (20 μmol/liter of rolipram) caused a 3- to 4-fold stimulation of renin secretion that was attenuated by l-Name and that was even overcompensated by sodium nitroprusside. Inhibition of PDE-3 by 20 μmol/liter of milrinone or by 200 nmol/liter of trequinsin caused a 5- to 6-fold stimulation of renin secretion that was slightly enhanced by NO synthase inhibition and moderately attenuated by NO donation. Because PDE-3 is a cGMP-inhibited cAMP-PDE the role of endogenous cGMP for the effects of NO was examined by the use of the specific guanylate cyclase inhibitor 1-H-(1,2,4)oxodiazolo(4,3a)quinoxalin-1-one (20 μmol). In the presence of 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-1-one the effect of NO on renin secretion was abolished, whereas PDE-3 inhibitors exerted their normal effects. These findings suggest that PDE-3 plays a major role for the cAMP control of renin secretion. Our findings are compatible with the idea that the stimulatory effects of endogenous and exogenous NO on renin secretion are mediated by a cGMP-induced inhibition of cAMP degradation.
Resumo:
The human and shark Na–K–Cl cotransporters (NKCC), although 74% identical in amino acid sequence, exhibit marked differences in ion transport and bumetanide binding. We have utilized shark–human chimeras of NKCC1 to search for regions that confer the kinetic differences. Two chimeras (hs3.1 and its reverse sh3.1) with a junction point located at the beginning of the third transmembrane domain were examined after stable transfection in HEK-293 cells. Each carried out bumetanide-sensitive 86Rb influx with cation affinities intermediate between shark and human cotransporters. In conjunction with the previous finding that the N and C termini are not responsible for differences in ion transport, the current observations identify the second transmembrane domain as playing an important role. Site-specific mutagenesis of two pairs of residues in this domain revealed that one pair is indeed involved in the difference in Na affinity, and a second pair is involved in the difference in Rb affinity. Substitution of the same residues with corresponding residues from NKCC2 or the Na-Cl cotransporter resulted in cation affinity changes, consistent with the hypothesis that alternative splicing of transmembrane domain 2 endows different versions of NKCC2 with unique kinetic behaviors. None of the changes in transmembrane domain 2 was found to substantially affect Km(Cl), demonstrating that the affinity difference for Cl is specified by the region beyond predicted transmembrane domain 3. Finally, unlike Cl, bumetanide binding was strongly affected by shark–human replacement of transmembrane domain 2, indicating that the bumetanide-binding site is not the same as the Cl-binding site.