13 resultados para Bromoindole alkaloid

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrrolizidine alkaloids are preformed plant defense compounds with sporadic phylogenetic distribution. They are thought to have evolved in response to the selective pressure of herbivory. The first pathway-specific intermediate of these alkaloids is the rare polyamine homospermidine, which is synthesized by homospermidine synthase (HSS). The HSS gene from Senecio vernalis was cloned and shown to be derived from the deoxyhypusine synthase (DHS) gene, which is highly conserved among all eukaryotes and archaebacteria. DHS catalyzes the first step in the activation of translation initiation factor 5A (eIF5A), which is essential for eukaryotic cell proliferation and which acts as a cofactor of the HIV-1 Rev regulatory protein. Sequence comparison provides direct evidence for the evolutionary recruitment of an essential gene of primary metabolism (DHS) for the origin of the committing step (HSS) in the biosynthesis of pyrrolizidine alkaloids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two key genes in terpenoid indole alkaloid biosynthesis, Tdc and Str, encoding tryptophan decarboxylase and strictosidine synthase, respectively, are coordinately induced by fungal elicitors in suspension-cultured Catharanthus roseus cells. We have studied the roles of the jasmonate biosynthetic pathway and of protein phosphorylation in signal transduction initiated by a partially purified elicitor from yeast extract. In addition to activating Tdc and Str gene expression, the elicitor also induced the biosynthesis of jasmonic acid. The jasmonate precursor α-linolenic acid or methyl jasmonate (MeJA) itself induced Tdc and Str gene expression when added exogenously . Diethyldithiocarbamic acid, an inhibitor of jasmonate biosynthesis, blocked both the elicitor-induced formation of jasmonic acid and the activation of terpenoid indole alkaloid biosynthetic genes. The protein kinase inhibitor K-252a abolished both elicitor-induced jasmonate biosynthesis and MeJA-induced Tdc and Str gene expression. Analysis of the expression of Str promoter/gusA fusions in transgenic C. roseus cells showed that the elicitor and MeJA act at the transcriptional level. These results demonstrate that the jasmonate biosynthetic pathway is an integral part of the elicitor-triggered signal transduction pathway that results in the coordinate expression of the Tdc and Str genes and that protein kinases act both upstream and downstream of jasmonates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used a transgenic cell line of Catharanthus roseus (L.) G. Don to study the relative importance of the supply of biosynthetic precursors for the synthesis of terpenoid indole alkaloids. Line S10 carries a recombinant, constitutively overexpressed version of the endogenous strictosidine synthase (Str) gene. Various concentrations and combinations of the substrate tryptamine and of loganin, the immediate precursor of secologanin, were added to suspension cultures of S10. Our results indicate that high rates of tryptamine synthesis can take place under conditions of low tryptophan decarboxylase activity, and that high rates of strictosidine synthesis are possible in the presence of a small tryptamine pool. It appears that the utilization of tryptamine for alkaloid biosynthesis enhances metabolic flux through the indole pathway. However, a deficiency in the supply of either the iridoid or the indole precursor can limit flux through the step catalyzed by strictosidine synthase. Precursor utilization for the synthesis of strictosidine depends on the availability of the cosubstrate; the relative abundance of these precursors is a cell-line-specific trait that reflects the metabolic status of the cultures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microorganisms express multidrug resistance pumps (MDRs) that can confound antibiotic discovery. We propose the use of mutants deficient in MDRs to overcome this problem. Sensitivity to quinolones and to amphipathic cations (norfloxacin, benzalkonium chloride, cetrimide, pentamidine, etc.) was increased 5- to 30-fold in a Staphylococcus aureus mutant with a disrupted chromosomal copy of the NorA MDR. NorA was required both for increased sensitivity to drugs in the presence of an MDR inhibitor and for increased rate of cation efflux. This requirement suggests that NorA is the major MDR protecting S. aureus from the antimicrobials studied. A 15- to 60-fold increase in sensitivity to antimicrobials also was observed in wild-type cells at an alkaline pH that favors accumulation of cations and weak bases. This effect was synergistic with a norA mutation, resulting in an increase up to 1,000-fold in sensitivity to antimicrobials. The usefulness of applying MDR mutants for natural product screening was demonstrated further by increased sensitivity of the norA− strain to plant alkaloid antimicrobials, which might be natural MDR substrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochrome P450s constitute a superfamily of genes encoding mostly microsomal hemoproteins that play a dominant role in the metabolism of a wide variety of both endogenous and foreign compounds. In insects, xenobiotic metabolism (i.e., metabolism of insecticides and toxic natural plant compounds) is known to involve members of the CYP6 family of cytochrome P450s. Use of a 3′ RACE (rapid amplification of cDNA ends) strategy with a degenerate primer based on the conserved cytochrome P450 heme-binding decapeptide loop resulted in the amplification of four cDNA sequences representing another family of cytochrome P450 genes (CYP28) from two species of isoquinoline alkaloid-resistant Drosophila and the cosmopolitan species Drosophila hydei. The CYP28 family forms a monophyletic clade with strong regional homologies to the vertebrate CYP3 family and the insect CYP6 family (both of which are involved in xenobiotic metabolism) and to the insect CYP9 family (of unknown function). Induction of mRNA levels for three of the CYP28 cytochrome P450s by toxic host-plant allelochemicals (up to 11.5-fold) and phenobarbital (up to 49-fold) corroborates previous in vitro metabolism studies and suggests a potentially important role for the CYP28 family in determining patterns of insect–host-plant relationships through xenobiotic detoxification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure to cyclopamine, a steroid alkaloid that blocks Sonic hedgehog (Shh) signaling, promotes pancreatic expansion in embryonic chicks. Heterotopic development of pancreatic endocrine and exocrine structures occurs in regions adjacent to the pancreas including stomach and duodenum, and insulin-producing islets in the pancreas are enlarged. The homeodomain transcription factor PDX1, required for pancreas development, is expressed broadly in the posterior foregut but pancreas development normally initiates only in a restricted region of PDX1-expressing posterior foregut where endodermal Shh expression is repressed. The results suggests that cyclopamine expands the endodermal region where Shh signaling does not occur, resulting in pancreatic differentiation in a larger region of PDX1-expressing foregut endoderm. Cyclopamine reveals the capacity of a broad region of the posterior embryonic foregut to form pancreatic cells and provides a means for expanding embryonic pancreas development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Utetheisa ornatrix (Lepidoptera, Arctiidae), the female mates preferentially with larger males. Having a larger father results in the eggs being more richly endowed with defensive pyrrolizidine alkaloid (which the female receives from the male with the sperm package, in quantity proportional to the male's body mass, and passes on to the eggs); having a larger father also results in the sons and daughters themselves being larger (body mass is heritable in Utetheisa). We provide evidence herein that these consequences enhance the fitness of the offspring. Eggs sired by larger males are less vulnerable to predation (presumably because of their higher alkaloid content), whereas sons and daughters, by virtue of being larger, are, respectively, more successful in courtship and more fecund. The female Utetheisa, therefore, by being choosy, reaps both direct phenotypic and indirect genetic benefits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pupal defensive secretion of the 24-pointed ladybird beetle, Subcoccinella vigintiquatuorpunctata, consists of a mixture of macrocyclic polyamines, dominated by the three dimeric, 30-membered macrocycles 11-13, derived from the two building blocks 11-(2-hydoxyethylamino)-5-tetradecenoic acid (9) and 11-(2-hydoxyethylamino)-5,8-tetradecadienoic acid (10). Smaller amounts of the four possible cyclic trimers of 9 and 10 were also detected, corresponding to 45-membered macrocycles. Structural assignments were based on NMR-spectroscopic investigations and HPLC–MS analyses. In addition, the all-S absolute configuration of the S. vigintiquatuorpunctata macrocycles was determined by comparison of derivatives of the natural material with enantiomerically pure synthetic samples. Comparing this alkaloid mixture with that of the pupal defensive secretion in related ladybird beetle species indicates that the degree of oligomerization of the 2-hydroxyethylamino carboxylic acid building blocks can be carefully controlled by the insects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The voltage-gated sodium channel is the site of action of more than six classes of neurotoxins and drugs that alter its function by interaction with distinct, allosterically coupled receptor sites. Batrachotoxin (BTX) is a steroidal alkaloid that binds to neurotoxin receptor site 2 and causes persistent activation. BTX binding is inhibited allosterically by local anesthetics. We have investigated the interaction of BTX with amino acid residues I1760, F1764, and Y1771, which form part of local anesthetic receptor site in transmembrane segment IVS6 of type IIA sodium channels. Alanine substitution for F1764 (mutant F1764A) reduces tritiated BTX-A-20-α-benzoate binding affinity, causing a 60-fold increase in Kd. Alanine substitution for I1760, which is adjacent to F1764 in the predicted IVS6 transmembrane alpha helix, causes only a 4-fold increase in Kd. In contrast, mutant Y1771A shows no change in BTX binding affinity. For wild-type and mutant Y1771A, BTX shifted the voltage for half-maximal activation ≈40 mV in the hyperpolarizing direction and increased the percentage of noninactivating sodium current to ≈60%. In contrast, these BTX effects were eliminated completely for the F1764A mutant and were reduced substantially for mutant I1760A. Our data suggest that the BTX receptor site shares overlapping but nonidentical molecular determinants with the local anesthetic receptor site in transmembrane segment IVS6 as well as having unique molecular determinants in transmembrane segment IS6, as demonstrated in previous work. Evidently, BTX conforms to a domain–interface allosteric model of ligand binding and action, as previously proposed for calcium agonist and antagonist drugs acting on l-type calcium channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The larva of the green lacewing (Ceraeochrysa cubana) (Neuroptera, Chrysopidae) is a natural predator of eggs of Utetheisa ornatrix (Lepidoptera, Arctiidae), a moth that sequesters pyrrolizidine alkaloids from its larval foodplant (Fabaceae, Crotalaria spp.). Utetheisa eggs are ordinarily endowed with the alkaloid. Alkaloid-free Utetheisa eggs, produced experimentally, are pierced by the larva with its sharp tubular jaws and sucked out. Alkaloid-laden eggs, in contrast, are rejected. When attacking an Utetheisa egg cluster (numbering on average 20 eggs), the larva subjects it to an inspection process. It prods and/or pierces a small number of eggs (on average two to three) and, if these contain alkaloid, it passes “negative judgement” on the remainder of the cluster and turns away. Such generalization on the part of the larva makes sense, because the eggs within clusters differ little in alkaloid content. There is, however, considerable between-cluster variation in egg alkaloid content, so clusters in nature can be expected to range widely in palatability. To check each cluster for acceptability must therefore be adaptive for the larva, just as it must be adaptive for Utetheisa to lay its eggs in large clusters and to apportion alkaloid evenly among eggs of a cluster.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cultured cells of Eschscholtzia californica (Californian poppy) respond to a yeast elicitor preparation or Penicillium cyclopium spores with the production of benzophenanthridine alkaloids, which are potent phytoalexins. Confocal pH mapping with the probe carboxy-seminaphthorhodafluor-1-acetoxymethylester revealed characteristic shifts of the pH distribution in challenged cells: within a few minutes after elicitor contact a transient acidification of cytoplasmic and nuclear areas occurred in parallel with an increase of the vacuolar pH. The change of proton concentration in the vacuole and in the extravacuolar area showed a nearly constant relation, indicating an efflux of vacuolar protons into the cytosol. A 10-min treatment with 2 mm butyric or pivalic acid caused a transient acidification of the cytoplasm comparable to that observed after elicitor contact and also induced alkaloid biosynthesis. Experimental depletion of the vacuolar proton pool reversibly prevented both the elicitor-triggered pH shifts and the induction of alkaloid biosynthesis. pH shifts and induction of alkaloid biosynthesis showed a similar dependence on the elicitor concentration. Net efflux of K+, alkalinization of the outer medium, and browning of the cells were evoked only at higher elicitor concentrations. We suggest that transient acidification of the cytoplasm via efflux of vacuolar protons is both a necessary and sufficient step in the signal path toward biosynthesis of benzophenanthridine alkaloids in Californian poppy cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently have shown that selective growth of transplanted normal hepatocytes can be achieved in a setting of cell cycle block of endogenous parenchymal cells. Thus, massive proliferation of donor-derived normal hepatocytes was observed in the liver of rats previously given retrorsine (RS), a naturally occurring alkaloid that blocks proliferation of resident liver cells. In the present study, the fate of nodular hepatocytes transplanted into RS-treated or normal syngeneic recipients was followed. The dipeptidyl peptidase type IV-deficient (DPPIV−) rat model for hepatocyte transplantation was used to distinguish donor-derived cells from recipient cells. Hepatocyte nodules were chemically induced in Fischer 344, DPPIV+ rats; livers were then perfused and larger (>5 mm) nodules were separated from surrounding tissue. Cells isolated from either tissue were then injected into normal or RS-treated DPPIV− recipients. One month after transplantation, grossly visible nodules (2–3 mm) were seen in RS-treated recipients transplanted with nodular cells. They grew rapidly, occupying 80–90% of the host liver at 2 months, and progressed to hepatocellular carcinoma within 4 months. By contrast, no liver nodules developed within 6 months when nodular hepatocytes were injected into the liver of recipients not exposed to RS, although small clusters of donor-derived cells were present in these animals. Taken together, these results directly point to a fundamental role played by the host environment in modulating the growth and the progression rate of altered cells during carcinogenesis. In particular, they indicate that conditions associated with growth constraint of the host tissue can drive tumor progression in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant defense against microbial pathogens and herbivores relies heavily on the induction of defense proteins and low molecular weight antibiotics. The signals between perception of the aggression, gene activation, and the subsequent biosynthesis of secondary compounds are assumed to be pentacylic oxylipin derivatives. The rapid, but transient, synthesis of cis-jasmonic acid was demonstrated after insect attack on a food plant and by microbial elicitor addition to plant suspension cultures. This effect is highly specific and not caused by a number of environmental stresses such as light, heavy metals, or cold or heat shock. Elicitation of Eschscholtzia cell cultures also led to a rapid alkalinization of the growth medium prior to jasmonate formation. Inhibition of this alkalinization process by the protein kinase inhibitor staurosporine also inhibited jasmonate formation. The induction of specific enzymes in the benzo[c]phenanthridine alkaloid pathway leading to the antimicrobial sanguinarine was induced to a qualitatively and quantitatively similar extent by fungal elicitor, methyl jasmonate, and its linolenic acid-derived precursor 12-oxophytodienoic acid. It is herein proposed that a second oxylipid cascade may exist in plants starting from linoleic acid via 15,16-dihydro-12-oxophytodienoic acid to 9,10-dihydrojasmonate. Experiments with synthetic trihomojasmonate demonstrated that beta-oxidation is not a prerequisite for biological activity and that 12-oxophytodienoic acid and derivatives are most likely fully active as signal transducers. Octadecanoic acid-derived compounds are essential elements in modulating the synthesis of antibiotic compounds and are thus integral to plant defense.