5 resultados para Broken symmetry (Physics)
em National Center for Biotechnology Information - NCBI
Resumo:
The filamentary model of the metal-insulator transition in randomly doped semiconductor impurity bands is geometrically equivalent to similar models for continuous transitions in dilute antiferromagnets and even to the λ transition in liquid He, but the critical behaviors are different. The origin of these differences lies in two factors: quantum statistics and the presence of long range Coulomb forces on both sides of the transition in the electrical case. In the latter case, in addition to the main transition, there are two satellite transitions associated with disappearance of the filamentary structure in both insulating and metallic phases. These two satellite transitions were first identified by Fritzsche in 1958, and their physical origin is explained here in geometrical and topological terms that facilitate calculation of critical exponents.
Resumo:
Recent experimental data on the conductivity σ+(T), T → 0, on the metallic side of the metal–insulator transition in ideally random (neutron transmutation-doped) 70Ge:Ga have shown that σ+(0) ∝ (N − Nc)μ with μ = ½, confirming earlier ultra-low-temperature results for Si:P. This value is inconsistent with theoretical predictions based on diffusive classical scaling models, but it can be understood by a quantum-directed percolative filamentary amplitude model in which electronic basis states exist which have a well-defined momentum parallel but not normal to the applied electric field. The model, which is based on a new kind of broken symmetry, also explains the anomalous sign reversal of the derivative of the temperature dependence in the critical regime.
Resumo:
The threshold behavior of the transport properties of a random metal in the critical region near a metal–insulator transition is strongly affected by the measuring electromagnetic fields. In spite of the randomness, the electrical conductivity exhibits striking phase-coherent effects due to broken symmetry, which greatly sharpen the transition compared with the predictions of effective medium theories, as previously explained for electrical conductivities. Here broken symmetry explains the sign reversal of the T → 0 magnetoconductance of the metal–insulator transition in Si(B,P), also previously not understood by effective medium theories. Finally, the symmetry-breaking features of quantum percolation theory explain the unexpectedly very small electrical conductivity temperature exponent α = 0.22(2) recently observed in Ni(S,Se)2 alloys at the antiferromagnetic metal–insulator transition below T = 0.8 K.
Resumo:
The role of symmetry in fundamental physics is reviewed.
Resumo:
Reasoning from two basic principles of molecular physics, P invariance of electromagnetic interaction and the second law of thermodynamics, one would conclude that mirror symmetry retained in the world of chiral molecules. This inference is fully consistent with what is observed in inorganic nature. However, in the bioorganic world, the reverse is true. Mirror symmetry there is definitely broken. Is it possible to account for this phenomenon without going beyond conventional concepts of the kinetics of enantioselective processes? This study is an attempt to survey all existing hypotheses containing this phenomenon.