10 resultados para Breakdown Probability
em National Center for Biotechnology Information - NCBI
Resumo:
The lipid bilayer of the myelin membrane of the central nervous system (CNS) and the peripheral nervous system (PNS) contains the oligodendrocyte- and Schwann cell-specific glycosphingolipids galactocerebrosides (GalC) and GalC-derived sulfatides (sGalC). We have generated a UDP-galactose ceramide galactosyltransferase (CGT) null mutant mouse (cgt−/−) with CNS and PNS myelin completely depleted of GalC and derived sGalC. Oligodendrocytes and Schwann cells are unable to restore the structure and function of these galactosphingolipids to maintain the insulator function of the membrane bilayer. The velocity of nerve conduction of homozygous cgt−/− mice is reduced to that of unmyelinated axons. This indicates a severely altered ion permeability of the lipid bilayer. GalC and sGalC are essential for the unperturbed lipid bilayer of the myelin membrane of CNS and PNS. The severe dysmyelinosis leads to death of the cgt−/− mouse at the end of the myelination period.
Resumo:
The effects of cell toxicity are known to be inherent in carcinogenesis induced by radiation or chemical carcinogens. The event of cell death precludes tumor induction from occurring. A long standing problem is to estimate the proportion of initiated cells that die before tumor induction. No experimental techniques are currently available for directly gauging the rate of cell death over extended periods of time. The obstacle can be surmounted by newly developed theoretical methods of carcinogenesis modeling. In this paper, we apply such methods to published data on multiple lung tumors in mice receiving different schedules of urethane. Bioassays of this type play an important role in testing environmental chemicals for carcinogenic activity. Our estimates for urethane-induced carcinogenesis show that, unexpectedly, many initiated cells die early in the course of tumor promotion. We present numerical estimates for the probability of initiated cell death for different schedules (and doses) of urethane administration.
Resumo:
Structural genomics aims to solve a large number of protein structures that represent the protein space. Currently an exhaustive solution for all structures seems prohibitively expensive, so the challenge is to define a relatively small set of proteins with new, currently unknown folds. This paper presents a method that assigns each protein with a probability of having an unsolved fold. The method makes extensive use of protomap, a sequence-based classification, and scop, a structure-based classification. According to protomap, the protein space encodes the relationship among proteins as a graph whose vertices correspond to 13,354 clusters of proteins. A representative fold for a cluster with at least one solved protein is determined after superposition of all scop (release 1.37) folds onto protomap clusters. Distances within the protomap graph are computed from each representative fold to the neighboring folds. The distribution of these distances is used to create a statistical model for distances among those folds that are already known and those that have yet to be discovered. The distribution of distances for solved/unsolved proteins is significantly different. This difference makes it possible to use Bayes' rule to derive a statistical estimate that any protein has a yet undetermined fold. Proteins that score the highest probability to represent a new fold constitute the target list for structural determination. Our predicted probabilities for unsolved proteins correlate very well with the proportion of new folds among recently solved structures (new scop 1.39 records) that are disjoint from our original training set.
Resumo:
ATP-binding cassette (ABC) transporters bind and hydrolyze ATP. In the cystic fibrosis transmembrane conductance regulator Cl− channel, this interaction with ATP generates a gating cycle between a closed (C) and two open (O1 and O2) conformations. To understand better how ATP controls channel activity, we examined gating transitions from the C to the O1 and O2 states and from these open states to the C conformation. We made three main observations. First, we found that the channel can open into either the O1 or O2 state, that the frequency of transitions to both states was increased by ATP concentration, and that ATP increased the relative proportion of openings into O1 vs. O2. These results indicate that ATP can interact with the closed state to open the channel in at least two ways, which may involve binding to nucleotide-binding domains (NBDs) NBD1 and NBD2. Second, ATP prolonged the burst duration and altered the way in which the channel closed. These data suggest that ATP also interacts with the open channel. Third, the channel showed runs of specific types of open–closed transitions. This finding suggests a mechanism with more than one cycle of gating transitions. These data suggest models to explain how ATP influences conformational transitions in cystic fibrosis transmembrane conductance regulator and perhaps other ABC transporters.
Resumo:
The mechanisms underlying the menstrual lysis leading to shedding of the human endometrium and its accompanying bleeding are still largely unknown. In particular, whether breakdown of the endometrial fibrillar extra-cellular matrix that precedes bleeding depends on aspartic-, cysteine-, serine-, or metalloproteinases remains unclear. In the present study, menstrual regression of the human endometrium was mimicked in organ culture. Whereas sex steroids could preserve tissue integrity only in nonperimenstrual explants, matrix breakdown upon sex steroid deprivation was completely and reversibly inhibited at all stages of the menstrual cycle by specific inhibitors of matrix metalloproteinases, but not by inhibitors of the other classes of proteinases. Matrix metalloproteinases are thus identified as the key class of proteinases involved in the initiation of menstruation.
Resumo:
The reconstruction of multitaxon trees from molecular sequences is confounded by the variety of algorithms and criteria used to evaluate trees, making it difficult to compare the results of different analyses. A global method of multitaxon phylogenetic reconstruction described here, Bootstrappers Gambit, can be used with any four-taxon algorithm, including distance, maximum likelihood, and parsimony methods. It incorporates a Bayesian-Jeffreys'-bootstrap analysis to provide a uniform probability-based criterion for comparing the results from diverse algorithms. To examine the usefulness of the method, the origin of the eukaryotes has been investigated by the analysis of ribosomal small subunit RNA sequences. Three common algorithms (paralinear distances, Jukes-Cantor distances, and Kimura distances) support the eocyte topology, whereas one (maximum parsimony) supports the archaebacterial topology, suggesting that the eocyte prokaryotes are the closest prokaryotic relatives of the eukaryotes.
Resumo:
Disruption of the renal proximal tubule (PT) brush border is a prominent early event during ischemic injury to the kidney. The molecular basis for this event is unknown. Within the brush border, ezrin may normally link the cytoskeleton to the cell plasma membrane. Anoxia causes ezrin to dissociate from the cytoskeleton and also causes many cell proteins to become dephosphorylated in renal PTs. This study examines the hypothesis that ezrin dephosphorylation accompanies and may mediate the anoxic disruption of the rabbit renal PT. During normoxia, 73 +/- 3% of the cytoskeleton-associated (Triton-insoluble) ezrin was phosphorylated, but 88 +/- 6% of dissociated (Triton-soluble) ezrin was dephosphorylated. Phosphorylation was on serine/threonine resides, since ezrin was not detectable by an antibody against phosphotyrosine. After 60 min of anoxia, phosphorylation of total intracellular ezrin significantly decreased from 72 +/- 2% to 21 +/- 9%, and ezrin associated with the cytoskeleton decreased from 91 +/- 2% to 58 +/- 2%. Calyculin A (1 microM), the serine/threonine phosphatase inhibitor, inhibited the dephosphorylation of ezrin during anoxia by 57% and also blocked the dissociation of ezrin from the cytoskeleton by 53%. Our results demonstrate that (i) the association of ezrin with the renal microvillar cytoskeleton is correlated with phosphorylation of ezrin serine/threonine residues and (ii) anoxia may cause disruption of the renal brush border by dephosphorylating ezrin and thereby dissociating the brush border membrane from the cytoskeleton.
Resumo:
We have studied enhancer function in transient and stable expression assays in mammalian cells by using systems that distinguish expressing from nonexpressing cells. When expression is studied in this way, enhancers are found to increase the probability of a construct being active but not the level of expression per template. In stably integrated constructs, large differences in expression level are observed but these are not related to the presence of an enhancer. Together with earlier studies, these results suggest that enhancers act to affect a binary (on/off) switch in transcriptional activity. Although this idea challenges the widely accepted model of enhancer activity, it is consistent with much, if not all, experimental evidence on this subject. We hypothesize that enhancers act to increase the probability of forming a stably active template. When randomly integrated into the genome, enhancers may affect a metastable state of repression/activity, permitting expression in regions that would not permit activity of an isolated promoter.