29 resultados para Bread Wheat

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

5′-End fragments of two genes encoding plastid-localized acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) of wheat (Triticum aestivum) were cloned and sequenced. The sequences of the two genes, Acc-1,1 and Acc-1,2, are 89% identical. Their exon sequences are 98% identical. The amino acid sequence of the biotin carboxylase domain encoded by Acc-1,1 and Acc-1,2 is 93% identical with the maize plastid ACCase but only 80–84% identical with the cytosolic ACCases from other plants and from wheat. Four overlapping fragments of cDNA covering the entire coding region were cloned by PCR and sequenced. The wheat plastid ACCase ORF contains 2,311 amino acids with a predicted molecular mass of 255 kDa. A putative transit peptide is present at the N terminus. Comparison of the genomic and cDNA sequences revealed introns at conserved sites found in the genes of other plant multifunctional ACCases, including two introns absent from the wheat cytosolic ACCase genes. Transcription start sites of the plastid ACCase genes were estimated from the longest cDNA clones obtained by 5′-RACE (rapid amplification of cDNA ends). The untranslated leader sequence encoded by the Acc-1 genes is at least 130–170 nucleotides long and is interrupted by an intron. Southern analysis indicates the presence of only one copy of the gene in each ancestral chromosome set. The gene maps near the telomere on the short arm of chromosomes 2A, 2B, and 2D. Identification of three different cDNAs, two corresponding to genes Acc-1,1 and Acc-1,2, indicates that all three genes are transcriptionally active.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both high- and low-molecular-weight glutenin subunits (LMW-GS) play the major role in determining the viscoelastic properties of wheat (Triticum aestivum L.) flour. To date there has been no clear correspondence between the amino acid sequences of LMW-GS derived from DNA sequencing and those of actual LMW-GS present in the endosperm. We have characterized a particular LMW-GS from hexaploid bread wheat, a major component of the glutenin polymer, which we call the 42K LMW-GS, and have isolated and sequenced the putative corresponding gene. Extensive amino acid sequences obtained directly for this 42K LMW-GS indicate correspondence between this protein and the putative corresponding gene. This subunit did not show a cysteine (Cys) at position 5, in contrast to what has frequently been reported for nucleotide-based sequences of LMW-GS. This Cys has been replaced by one occurring in the repeated-sequence domain, leaving the total number of Cys residues in the molecule the same as in various other LMW-GS. On the basis of the deduced amino acid sequence and literature-based assignment of disulfide linkages, a computer-generated molecular model of the 42K subunit was constructed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Durum wheat (Triticum turgidum L. var durum) cultivars exhibit lower Zn efficiency than comparable bread wheat (Triticum aestivum L.) cultivars. To understand the physiological mechanism(s) that confers Zn efficiency, this study used 65Zn to investigate ionic Zn2+ root uptake, binding, and translocation to shoots in seedlings of bread and durum wheat cultivars. Time-dependent Zn2+ accumulation during 90 min was greater in roots of the bread wheat cultivar. Zn2+ cell wall binding was not different in the two cultivars. In each cultivar, concentration-dependent Zn2+ influx was characterized by a smooth, saturating curve, suggesting a carrier-mediated uptake system. At very low solution Zn2+ activities, Zn2+ uptake rates were higher in the bread wheat cultivar. As a result, the Michaelis constant for Zn2+ uptake was lower in the bread wheat cultivar (2.3 μm) than in the durum wheat cultivar (3.9 μm). Low temperature decreased the rate of Zn2+ influx, suggesting that metabolism plays a role in Zn2+ uptake. Ca inhibited Zn2+ uptake equally in both cultivars. Translocation of Zn to shoots was greater in the bread wheat cultivar, reflecting the higher root uptake rates. The study suggests that lower root Zn2+ uptake rates may contribute to reduced Zn efficiency in durum wheat varieties under Zn-limiting conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High Cd content in durum wheat (Triticum turgidum L. var durum) grain grown in the United States and Canada presents potential health and economic problems for consumers and growers. In an effort to understand the biological processes that result in excess Cd accumulation, root Cd uptake and xylem translocation to shoots in seedlings of bread wheat (Triticum aestivum L.) and durum wheat cultivars were studied. Whole-plant Cd accumulation was somewhat greater in the bread wheat cultivar, but this was probably because of increased apoplastic Cd binding. Concentration-dependent 109Cd2+-influx kinetics in both cultivars were characterized by smooth, nonsaturating curves that could be dissected into linear and saturable components. The saturable component likely represented carrier-mediated Cd influx across root-cell plasma membranes (Michaelis constant, 20–40 nm; maximum initial velocity, 26–29 nmol g−1 fresh weight h−1), whereas linear Cd uptake represented cell wall binding of 109Cd. Cd translocation to shoots was greater in the bread wheat cultivar than in the durum cultivar because a larger proportion of root-absorbed Cd moved to shoots. Our results indicate that excess Cd accumulation in durum wheat grain is not correlated with seedling-root influx rates or root-to-shoot translocation, but may be related to phloem-mediated Cd transport to the grain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For many agronomically important plant genes, only their position on a genetic map is known. In the absence of an efficient transposon tagging system, such genes have to be isolated by map-based cloning. In bread wheat Triticum aestivum, the genome is hexaploid, has a size of 1.6 × 1010 bp, and contains more than 80% of repetitive sequences. So far, this genome complexity has not allowed chromosome walking and positional cloning. Here, we demonstrate that chromosome walking using bacterial artificial chromosome (BAC) clones is possible in the diploid wheat Triticum monococcum (Am genome). BAC end sequences were mostly repetitive and could not be used for the first walking step. New probes corresponding to rare low-copy sequences were efficiently identified by low-pass DNA sequencing of the BACs. Two walking steps resulted in a physical contig of 450 kb on chromosome 1AmS. Genetic mapping of the probes derived from the BAC contig demonstrated perfect colinearity between the physical map of T. monococcum and the genetic map of bread wheat on chromosome 1AS. The contig genetically spans the Lr10 leaf rust disease resistance locus in bread wheat, with 0.13 centimorgans corresponding to 300 kb between the closest flanking markers. Comparison of the genetic to physical distances has shown large variations within 350 kb of the contig. The physical contig can now be used for the isolation of the orthologous regions in bread wheat. Thus, subgenome chromosome walking in wheat can produce large physical contigs and saturate genomic regions to support positional cloning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe a technique, sequence-tagged microsatellite profiling (STMP), to rapidly generate large numbers of simple sequence repeat (SSR) markers from genomic or cDNA. This technique eliminates the need for library screening to identify SSR-containing clones and provides an ∼25-fold increase in sequencing throughput compared to traditional methods. STMP generates short but characteristic nucleotide sequence tags for fragments that are present within a pool of SSR amplicons. These tags are then ligated together to form concatemers for cloning and sequencing. The analysis of thousands of tags gives rise to a representational profile of the abundance and frequency of SSRs within the DNA pool, from which low copy sequences can be identified. As each tag contains sufficient nucleotide sequence for primer design, their conversion into PCR primers allows the amplification of corresponding full-length fragments from the pool of SSR amplicons. These fragments permit the full characterisation of a SSR locus and provide flanking sequence for the development of a microsatellite marker. Alternatively, sequence tag primers can be used to directly amplify corresponding SSR loci from genomic DNA, thereby reducing the cost of developing a microsatellite marker to the synthesis of just one sequence-specific primer. We demonstrate the utility of STMP by the development of SSR markers in bread wheat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe a novel approach, selectively amplified microsatellite (SAM) analysis, for the targeted development of informative simple sequence repeat (SSR) markers. A modified selectively amplified microsatellite polymorphic loci assay is used to generate multi-locus SSR fingerprints that provide a source of polymorphic DNA markers (SAMs) for use in genetic studies. These polymorphisms capture the repeat length variation associated with SSRs and allow their chromosomal location to be determined prior to the expense of isolating and characterising individual loci. SAMs can then be converted to locus-specific SSR markers with the design and synthesis of a single primer specific to the conserved region flanking the repeat. This approach offers a cost-efficient and rapid method for developing SSR markers for predetermined chromosomal locations and of potential informativeness. The high recovery rate of useful SSR markers makes this strategy a valuable tool for population and genetic mapping studies. The utility of SAM analysis was demonstrated by the development of SSR markers in bread wheat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spores harboring an ACC1 deletion derived from a diploid Saccharomyces cerevisiae strain, in which one copy of the entire ACC1 gene is replaced with a LEU2 cassette, fail to grow. A chimeric gene consisting of the yeast GAL10 promoter, yeast ACC1 leader, wheat cytosolic acetyl-CoA carboxylase (ACCase) cDNA, and yeast ACC1 3′ tail was used to complement a yeast ACC1 mutation. The complementation demonstrates that active wheat ACCase can be produced in yeast. At low concentrations of galactose, the activity of the “wheat gene” driven by the GAL10 promoter is low and ACCase becomes limiting for growth, a condition expected to enhance transgenic yeast sensitivity to wheat ACCase-specific inhibitors. An aryloxyphenoxypropionate and two cyclohexanediones do not inhibit growth of haploid yeast strains containing the yeast ACC1 gene, but one cyclohexanedione inhibits growth of the gene-replacement strains at concentrations below 0.2 mM. In vitro, the activity of wheat cytosolic ACCase produced by the gene-replacement yeast strain is inhibited by haloxyfop and cethoxydim at concentrations above 0.02 mM. The activity of yeast ACCase is less affected. The wheat plastid ACCase in wheat germ extract is inhibited by all three herbicides at concentrations below 0.02 mM. Yeast gene-replacement strains will provide a convenient system for the study of plant ACCases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of chimeral genes, consisting of the yeast GAL10 promoter, yeast ACC1 leader, wheat acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) cDNA, and yeast ACC1 3′-tail, was used to complement a yeast ACC1 mutation. These genes encode a full-length plastid enzyme, with and without the putative chloroplast transit peptide, as well as five chimeric cytosolic/plastid proteins. Four of the genes, all containing at least half of the wheat cytosolic ACCase coding region at the 5′-end, complement the yeast mutation. Aryloxyphenoxypropionate and cyclohexanedione herbicides, at concentrations below 10 μM, inhibit the growth of haploid yeast strains that express two of the chimeric ACCases. This inhibition resembles the inhibition of wheat plastid ACCase observed in vitro and in vivo. The differential response to herbicides localizes the sensitivity determinant to the third quarter of the multidomain plastid ACCase. Sequence comparisons of different multidomain and multisubunit ACCases suggest that this region includes part of the carboxyltransferase domain, and therefore that the carboxyltransferase activity of ACCase (second half-reaction) is the target of the inhibitors. The highly sensitive yeast gene-replacement strains described here provide a convenient system to study herbicide interaction with the enzyme and a powerful screening system for new inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thioredoxin, a ubiquitous 12-kDa regulatory disulfide protein, was found to reduce disulfide bonds of allergens (convert S—S to 2 SH) and thereby mitigate the allergenicity of commercial wheat preparations. Allergenic strength was determined by skin tests with a canine model for food allergy. Statistically significant mitigation was observed with 15 of 16 wheat-sensitive animals. The allergenicity of the protein fractions extracted from wheat flour with the indicated solvent was also assessed: the gliadins (ethanol) were the strongest allergens, followed by glutenins (acetic acid), albumins (water), and globulins (salt water). Of the gliadins, the α and β fractions were most potent, followed by the γ and ω types. Thioredoxin mitigated the allergenicity associated with the major protein fractions—i.e, the gliadins (including the α, β, and γ types) and the glutenins—but gave less consistent results with the minor fractions, the albumins and globulins. In all cases, mitigation was specific to thioredoxin that had been reduced either enzymically by NADPH and NADP–thioredoxin reductase or chemically by dithiothreitol; reduced glutathione was without significant effect. As in previous studies, thioredoxin was particularly effective in the reduction of intramolecular (intrachain) disulfide bonds. The present results demonstrate that the reduction of these disulfide bonds is accompanied by a statistically significant decrease in allergenicity of the active proteins. This decrease occurs alongside the changes identified previously—i.e., increased susceptibility to proteolysis and heat, and altered biochemical activity. The findings open the door to the testing of the thioredoxin system in the production of hypoallergenic, more-digestible foods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate phylogenetic relationships among plasmons in Triticum and Aegilops, PCR–single-strand conformational polymorphism (PCR-SSCP) analyses were made of 14.0-kb chloroplast (ct) and 13.7-kb mitochondrial (mt)DNA regions that were isolated from 46 alloplasmic wheat lines and one euplasmic line. These plasmons represent 31 species of the two genera. The ct and mtDNA regions included 10 and 9 structural genes, respectively. A total of 177 bands were detected, of which 40.6% were variable. The proportion of variable bands in ctDNA (51.1%) was higher than that of mtDNA (28.9%). The phylogenetic trees of plasmons, derived by two different models, indicate a common picture of plasmon divergence in the two genera and suggest three major groups of plasmons (Einkorn, Triticum, and Aegilops). Because of uniparental plasmon transmission, the maternal parents of all but one polyploid species were identified. Only one Aegilops species, Ae. speltoides, was included in the Triticum group, suggesting that this species is the plasmon and B and G genome donor of all polyploid wheats. ctDNA variations were more intimately correlated with vegetative characters, whereas mtDNA variations were more closely correlated with reproductive characters. Plasmon divergence among the diploids of the two genera largely paralleled genome divergence. The relative times of origin of the polyploid species were inferred from genetic distances from their putative maternal parents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

“Soft” and “hard” are the two main market classes of wheat (Triticum aestivum L.) and are distinguished by expression of the Hardness gene. Friabilin, a marker protein for grain softness (Ha), consists of two proteins, puroindoline a and b (pinA and pinB, respectively). We previously demonstrated that a glycine to serine mutation in pinB is linked inseparably to grain hardness. Here, we report that the pinB serine mutation is present in 9 of 13 additional randomly selected hard wheats and in none of 10 soft wheats. The four exceptional hard wheats not containing the serine mutation in pinB express no pinA, the remaining component of the marker protein friabilin. The absence of pinA protein was linked inseparably to grain hardness among 44 near-isogenic lines created between the soft variety Heron and the hard variety Falcon. Both pinA and pinB apparently are required for the expression of grain softness. The absence of pinA protein and transcript and a glycine-to-serine mutation in pinB are two highly conserved mutations associated with grain hardness, and these friabilin genes are the suggested tightly linked components of the Hardness gene. A previously described grain hardness related gene termed “GSP-1” (grain softness protein) is not controlled by chromosome 5D and is apparently not involved in grain hardness. The association of grain hardness with mutations in both pinA or pinB indicates that these two proteins alone may function together to effect grain softness. Elucidation of the molecular basis for grain hardness opens the way to understanding and eventually manipulating this wheat endosperm property.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The satellite tobacco necrosis virus RNA is uncapped and requires a 3′ translational enhancer domain (TED) for translation. Both in the wheat germ extract and in tobacco, TED stimulates in cis translation of heterologous, uncapped RNAs. In this study we investigated to what extent translation stimulation by TED depends on binding to wheat germ factors. We show that in vitro TED binds at least seven wheat germ proteins. Translation and crosslinking assays, to which TED or TED derivatives with reduced functionality were included as competitor, showed that TED function correlates with binding to a 28 kDa protein (p28). One particular condition of competition revealed that p28 binding is not obligatory for TED function. Under this condition, a 30 kDa protein (p30) binds to TED. Importantly, affinity of p30 correlates with functionality of TED. These results strongly suggest that TED has the capacity to stimulate translation by recruiting the translational machinery either via binding to p28 or via binding to p30.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed antioxidative defenses, photosynthesis, and pigments (especially xanthophyll-cycle components) in two wheat (Triticum durum Desf.) cultivars, Adamello and Ofanto, during dehydration and rehydration to determine the difference in their sensitivities to drought and to elucidate the role of different protective mechanisms against oxidative stress. Drought caused a more pronounced inhibition in growth and photosynthetic rates in the more sensitive cv Adamello compared with the relatively tolerant cv Ofanto. During dehydration the glutathione content decreased in both wheat cultivars, but only cv Adamello showed a significant increase in glutathione reductase and hydrogen peroxide-glutathione peroxidase activities. The activation states of two sulfhydryl-containing chloroplast enzymes, NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-bisphosphatase, were maintained at control levels during dehydration and rehydration in both cultivars. This indicates that the defense systems involved are efficient in the protection of sulfhydryl groups against oxidation. Drought did not cause significant effects on lipid peroxidation. Upon dehydration, a decline in chlorophyll a, lutein, neoxanthin, and β-carotene contents, and an increase in the pool of de-epoxidized xanthophyll-cycle components (i.e. zeaxanthin and antheraxanthin), were evident only in cv Adamello. Accordingly, after exposure to drought, cv Adamello showed a larger reduction in the actual photosystem II photochemical efficiency and a higher increase in nonradiative energy dissipation than cv Ofanto. Although differences in zeaxanthin content were not sufficient to explain the difference in drought tolerance between the two cultivars, zeaxanthin formation may be relevant in avoiding irreversible damage to photosystem II in the more sensitive cultivar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We isolated a cDNA encoding a 568-amino acid, heat-stress-induced peptidyl prolyl isomerase belonging to the FK506-binding-protein (FKBP) family. The open reading frame encodes for a peptidyl prolyl isomerase that possesses three FKBP-12-like domains, a putative tetratricopeptide motif, and a calmodulin-binding domain. Specific antibodies showed that the open reading frame encodes a heat-induced 77-kD protein, the wheat FKBP77 (wFKBP77), which exhibits 84% identity with the wFKBP73 and 42% identity with the human FKBP59. Because of the high similarity in sequence to wFKBP73, wFKBP77 was designated as the heat-induced isoform. The wFKBP77 mRNA steady-state level was 14-fold higher at 37°C than at 25°C. The wFKBP77 transcript abundance was the highest in mature embryos that had imbibed and 2-d-old green shoots exposed to 37°C, and decreased to 6% in 6-d-old green shoots. The transcript level returned to the level detected at 25°C after recovery of the embryos for 90 min at 25°C. We compared wFKBP73 and wFKBP77 with the heat-shock proteins having cognate and heat-stress-induced counterparts.