10 resultados para Bond Ground-states

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Kinetic anomalies in protein folding can result from changes of the kinetic ground states (D, I, and N), changes of the protein folding transition state, or both. The 102-residue protein U1A has a symmetrically curved chevron plot which seems to result mainly from changes of the transition state. At low concentrations of denaturant the transition state occurs early in the folding reaction, whereas at high denaturant concentration it moves close to the native structure. In this study we use this movement to follow continuously the formation and growth of U1A's folding nucleus by φ analysis. Although U1A's transition state structure is generally delocalized and displays a typical nucleation–condensation pattern, we can still resolve a sequence of folding events. However, these events are sufficiently coupled to start almost simultaneously throughout the transition state structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The semiempirical PM3 method, calibrated against ab initio HF/6–31+G(d) theory, has been used to elucidate the reaction of 1,2-dichloroethane (DCE) with the carboxylate of Asp-124 at the active site of haloalkane dehalogenase of Xanthobacter autothropicus. Asp-124 and 13 other amino acid side chains that make up the active site cavity (Glu-56, Trp-125, Phe-128, Phe-172, Trp-175, Leu-179, Val-219, Phe-222, Pro-223, Val-226, Leu-262, Leu-263, and His-289) were included in the calculations. The three most significant observations of the present study are that: (i) the DCE substrate and Asp-124 carboxylate, in the reactive ES complex, are present as an ion-molecule complex with a structure similar to that seen in the gas-phase reaction of AcO− with DCE; (ii) the structures of the transition states in the gas-phase and enzymatic reaction are much the same where the structure formed at the active site is somewhat exploded; and (iii) the enthalpies in going from ground states to transition states in the enzymatic and gas-phase reactions differ by only a couple kcal/mol. The dehalogenase derives its catalytic power from: (i) bringing the electrophile and nucleophile together in a low-dielectric environment in an orientation that allows the reaction to occur without much structural reorganization; (ii) desolvation; and (iii) stabilizing the leaving chloride anion by Trp-125 and Trp-175 through hydrogen bonding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The heavy fermions are a subset of the f-electron intermetallic compounds straddling the magnetic/nonmagnetic boundary. Their low-temperature properties are characterized by an electronic energy scale of order 1-10 K. Among the low-temperature ground states observed in heavy fermion compounds are exotic superconductors and magnets, as well as unusual semiconductors. We review here the current experimental and theoretical understanding of these systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DsbA, the disulfide bond catalyst of Escherichia coli, is a periplasmic protein having a thioredoxin-like Cys-30-Xaa-Xaa-Cys-33 motif. The Cys-30–Cys-33 disulfide is donated to a pair of cysteines on the target proteins. Although DsbA, having high oxidizing potential, is prone to reduction, it is maintained essentially all oxidized in vivo. DsbB, an integral membrane protein having two pairs of essential cysteines, reoxidizes DsbA that has been reduced upon functioning. It is not known, however, what might provide the overall oxidizing power to the DsbA–DsbB disulfide bond formation system. We now report that E. coli mutants defective in the hemA gene or in the ubiA-menA genes markedly accumulate the reduced form of DsbA during growth under the conditions of protoheme deprivation as well as ubiquinone/menaquinone deprivation. Disulfide bond formation of β-lactamase was impaired under these conditions. Intracellular state of DsbB was found to be affected by deprivation of quinones, such that it accumulates first as a reduced form and then as a form of a disulfide-linked complex with DsbA. This is followed by reduction of the bulk of DsbA molecules. These results suggest that the respiratory electron transfer chain participates in the oxidation of DsbA, by acting primarily on DsbB. It is remarkable that a cellular catalyst of protein folding is connected to the respiratory chain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The equilibrium for formation of the intramolecular hydrogen bond (KHB) in a series of substituted salicylate monoanions was investigated as a function of ΔpKa, the difference between the pKa values of the hydrogen bond donor and acceptor, in both water and dimethyl sulfoxide. The dependence of log KHB upon ΔpKa is linear in both solvents, but is steeper in dimethyl sulfoxide (slope = 0.73) than in water (slope = 0.05). Thus, hydrogen bond strength can undergo substantially larger increases in nonaqueous media than aqueous solutions as the charge density on the donor or acceptor atom increases. These results support a general mechanism for enzymatic catalysis, in which hydrogen bonding to a substrate is strengthened as charge rearranges in going from the ground state to the transition state; the strengthening of the hydrogen bond would be greater in a nonaqueous enzymatic active site than in water, thus providing a rate enhancement for an enzymatic reaction relative to the solution reaction. We suggest that binding energy of an enzyme is used to fix the substrate in the low-dielectric active site, where the strengthening of the hydrogen bond in the course of a reaction is increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experiments on various similar green fluorescent protein (GFP) mutants at the single-molecule level and in solution provide evidence of previously unknown short- and long-lived “dark” states and of related excited-state decay channels. Here, we present quantum chemical calculations on cis-trans photoisomerization paths of neutral, anionic, and zwitterionic GFP chromophores in their ground and first singlet excited states that explain the observed behaviors from a common perspective. The results suggest that favorable radiationless decay channels can exist for the different protonation states along these isomerizations, which apparently proceed via conical intersections. These channels are suggested to rationalize the observed dramatic reduction of fluorescence in solution. The observed single-molecule fast blinking is attributed to conversions between the fluorescent anionic and the dark zwitterionic forms whereas slow switching is attributed to conversions between the anionic and the neutral forms. The predicted nonadiabatic crossings are seen to rationalize the origins of a variety of experimental observations on a common basis and may have broad implications for photobiophysical mechanisms in GFP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbohydrate–protein bonds interrupt the rapid flow of leukocytes in the circulation by initiation of rolling and tethering at vessel walls. The cell surface carbohydrate ligands are glycosylated proteins like the mucin P-selectin glycoprotein ligand-1 (PSGL-1), which bind ubiquitously to the family of E-, P-, and L-selectin proteins in membranes of leukocytes and endothelium. The current view is that carbohydrate–selectin bonds dissociate a few times per second, and the unbinding rate increases weakly with force. However, such studies have provided little insight into how numerous hydrogen bonds, a Ca2+ metal ion bond, and other interactions contribute to the mechanical strength of these attachments. Decorating a force probe with very dilute ligands and controlling touch to achieve rare single-bond events, we have varied the unbinding rates of carbohydrate–selectin bonds by detachment with ramps of force/time from 10 to 100,000 pN/sec. Testing PSGL-1, its outer 19 aa (19FT), and sialyl LewisX (sLeX) against L-selectin in vitro on glass microspheres and in situ on neutrophils, we found that the unbinding rates followed the same dependence on force and increased by nearly 1,000-fold as rupture forces rose from a few to ≈200 pN. Plotted on a logarithmic scale of loading rate, the rupture forces reveal two prominent energy barriers along the unbinding pathway. Strengths above 75 pN arise from rapid detachment (<0.01 sec) impeded by an inner barrier that requires a Ca2+ bond between a single sLeX and the lectin domain. Strengths below 75 pN occur under slow detachment (>0.01 sec) impeded by the outer barrier, which appears to involve an array of weak (putatively hydrogen) bonds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of two-pump and probe femtosecond experiments designed to follow the relaxation dynamics of the lowest excited state (S1) populated by different modes. In the first mode, a direct (S0 → S1) radiative excitation of the ground state is used. In the second mode, an indirect excitation is used where the S1 state is populated by the use of two femtosecond laser pulses with different colors and delay times between them. The first pulse excites the S0 → S1 transition whereas the second pulse excites the S1 → Sn transition. The nonradiative relaxation from the Sn state populates the lowest excited state. Our results suggest that the S1 state relaxes faster when populated nonradiatively from the Sn state than when pumped directly by the S0 → S1 excitation. Additionally, the Sn → S1 nonradiative relaxation time is found to change by varying the delay time between the two pump pulses. The observed dependence of the lowest excited state population as well as its dependence on the delay between the two pump pulses are found to fit a kinetic model in which the Sn state populates a different surface (called S′1) than the one being directly excited (S1). The possible involvement of the Ag type states, the J intermediate, and the conical intersection leading to the S0 or to the isomerization product (K intermediate) are discussed in the framework of the proposed model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The green fluorescent protein (GFP) of the jellyfish Aequorea Victoria has attracted widespread interest since the discovery that its chromophore is generated by the autocatalytic, posttranslational cyclization and oxidation of a hexapeptide unit. This permits fusion of the DNA sequence of GFP with that of any protein whose expression or transport can then be readily monitored by sensitive fluorescence methods without the need to add exogenous fluorescent dyes. The excited state dynamics of GFP were studied following photo-excitation of each of its two strong absorption bands in the visible using fluorescence upconversion spectroscopy (about 100 fs time resolution). It is shown that excitation of the higher energy feature leads very rapidly to a form of the lower energy species, and that the excited state interconversion rate can be markedly slowed by replacing exchangeable protons with deuterons. This observation and others lead to a model in which the two visible absorption bands correspond to GFP in two ground-state conformations. These conformations can be slowly interconverted in the ground state, but the process is much faster in the excited state. The observed isotope effect suggests that the initial excited state process involves a proton transfer reaction that is followed by additional structural changes. These observations may help to rationalize and motivate mutations that alter the absorption properties and improve the photo stability of GFP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By equilibrating condensed DNA arrays against reservoirs of known osmotic stress and examining them with several structural probes, it has been possible to achieve a detailed thermodynamic and structural characterization of the change between two distinct regions on the liquid-crystalline phase diagram: (i) a higher density hexagonally packed region with long-range bond orientational order in the plane perpendicular to the average molecular direction and (ii) a lower density cholesteric region with fluid-like positional order. X-ray scattering on highly ordered DNA arrays at high density and with the helical axis oriented parallel to the incoming beam showed a sixfold azimuthal modulation of the first-order diffraction peak that reflects the macroscopic bond-orientational order. Transition to the less-dense cholesteric phase through osmotically controlled swelling shows the loss of this bond orientational order, which had been expected from the change in optical birefringence patterns and which is consistent with a rapid onset of molecular positional disorder. This change in order was previously inferred from intermolecular force measurements and is now confirmed by 31P NMR. Controlled reversible swelling and compaction under osmotic stress, spanning a range of densities between approximately 120 mg/ml to approximately 600 mg/ml, allow measurement of the free-energy changes throughout each phase and at the phase transition, essential information for theories of liquid-crystalline states.