2 resultados para Boer Goat
em National Center for Biotechnology Information - NCBI
Resumo:
Certain forms of myotonia, a condition characterized by delayed relaxation of muscle secondary to sarcolemmal hyperexcitability, are caused by diminished chloride conductance in the muscle cell membrane. We have investigated the molecular basis for decreased muscle chloride conductance in the myotonic goat, an historically important animal model for the elucidation of the role of chloride in muscle excitation. A single nucleotide change causing the substitution of proline for a conserved alanine residue in the carboxyl terminus of the goat muscle chloride channel (gCIC-1) was discovered. Heterologous expression of the mutation demonstrated a substantial (+47 mV) shift in the midpoint of steady-state activation of the channel, resulting in a diminished channel open probability at voltages near the resting membrane potential of skeletal muscle. These results provide a molecular basis for the decreased chloride conductance in myotonic muscle.
Resumo:
The X chromosome linkage group is conserved in placental mammals. However, X chromosome morphological differences, due to internal chromosome rearrangements, exist among mammalian species. We have developed bovine chromosome painting probes for Xp and Xq to assess segment homologies between the submetacentric bovine X chromosome and the acrocentric sheep and goat X chromosomes. These painting probes and their corresponding DNA libraries were developed by chromosome micromanipulation, DNA micropurification, microcloning, and PCR amplification. The bovine Xp painting probe identified an interstitially located homologous segment in the sheep and goat Xq region, most probably resulting from chromosome inversion. Ten type II (microsatellite) markers obtained from the bovine Xq library and five other X chromosome assigned, but unlinked, markers were used to generate a linkage map for Xq spanning 89.4 centimorgans. The chromosome painting probes and molecular markers generated in this study would be useful for comparative mapping and tracing of internal X chromosome rearrangements in all ruminant species and would contribute to the understanding of mammalian sex chromosome evolution.