8 resultados para Bit error rate

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

High affinity antibodies are generated in mice and humans by means of somatic hypermutation (SHM) of variable (V) regions of Ig genes. Mutations with rates of 10−5–10−3 per base pair per generation, about 106-fold above normal, are targeted primarily at V-region hot spots by unknown mechanisms. We have measured mRNA expression of DNA polymerases ι, η, and ζ by using cultured Burkitt's lymphoma (BL)2 cells. These cells exhibit 5–10-fold increases in heavy-chain V-region mutations targeted only predominantly to RGYW (R = A or G, Y = C or T, W = T or A) hot spots if costimulated with T cells and IgM crosslinking, the presumed in vivo requirements for SHM. An ∼4-fold increase pol ι mRNA occurs within 12 h when cocultured with T cells and surface IgM crosslinking. Induction of pols η and ζ occur with T cells, IgM crosslinking, or both stimuli. The fidelity of pol ι was measured at RGYW hot- and non-hot-spot sequences situated at nicks, gaps, and double-strand breaks. Pol ι formed T⋅G mispairs at a frequency of 10−2, consistent with SHM-generated C to T transitions, with a 3-fold increased error rate in hot- vs. non-hot-spot sequences for the single-nucleotide overhang. The T cell and IgM crosslinking-dependent induction of pol ι at 12 h may indicate an SHM “triggering” event has occurred. However, pols ι, η, and ζ are present under all conditions, suggesting that their presence is not sufficient to generate mutations because both T cell and IgM stimuli are required for SHM induction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pairwise sequence comparison methods have been assessed using proteins whose relationships are known reliably from their structures and functions, as described in the scop database [Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia C. (1995) J. Mol. Biol. 247, 536–540]. The evaluation tested the programs blast [Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). J. Mol. Biol. 215, 403–410], wu-blast2 [Altschul, S. F. & Gish, W. (1996) Methods Enzymol. 266, 460–480], fasta [Pearson, W. R. & Lipman, D. J. (1988) Proc. Natl. Acad. Sci. USA 85, 2444–2448], and ssearch [Smith, T. F. & Waterman, M. S. (1981) J. Mol. Biol. 147, 195–197] and their scoring schemes. The error rate of all algorithms is greatly reduced by using statistical scores to evaluate matches rather than percentage identity or raw scores. The E-value statistical scores of ssearch and fasta are reliable: the number of false positives found in our tests agrees well with the scores reported. However, the P-values reported by blast and wu-blast2 exaggerate significance by orders of magnitude. ssearch, fasta ktup = 1, and wu-blast2 perform best, and they are capable of detecting almost all relationships between proteins whose sequence identities are >30%. For more distantly related proteins, they do much less well; only one-half of the relationships between proteins with 20–30% identity are found. Because many homologs have low sequence similarity, most distant relationships cannot be detected by any pairwise comparison method; however, those which are identified may be used with confidence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report documents the error rate in a commercially distributed subset of the IMAGE Consortium mouse cDNA clone collection. After isolation of plasmid DNA from 1189 bacterial stock cultures, only 62.2% were uncontaminated and contained cDNA inserts that had significant sequence identity to published data for the ordered clones. An agarose gel electrophoresis pre-screening strategy identified 361 stock cultures that appeared to contain two or more plasmid species. Isolation of individual colonies from these stocks demonstrated that 7.1% of the original 1189 stocks contained both a correct and an incorrect plasmid. 5.9% of the original 1189 stocks contained multiple, distinct, incorrect plasmids, indicating the likelihood of multiple contaminating events. While only 739 of the stocks purchased contained the desired cDNA clone, agarose gel pre-screening, colony isolation and similarity searching of dbEST allowed for the identification of an additional 420 clones that would have otherwise been discarded. Considering the high error rate in this subset of the IMAGE cDNA clone set, the use of sequence verified clones for cDNA microarray construction is warranted. When this is not possible, pre-screening non-sequence verified clones with agarose gel electrophoresis provides an inexpensive and efficient method to eliminate contaminated clones from the probe set.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an approach for assessing the significance of sequence and structure comparisons by using nearly identical statistical formalisms for both sequence and structure. Doing so involves an all-vs.-all comparison of protein domains [taken here from the Structural Classification of Proteins (scop) database] and then fitting a simple distribution function to the observed scores. By using this distribution, we can attach a statistical significance to each comparison score in the form of a P value, the probability that a better score would occur by chance. As expected, we find that the scores for sequence matching follow an extreme-value distribution. The agreement, moreover, between the P values that we derive from this distribution and those reported by standard programs (e.g., blast and fasta validates our approach. Structure comparison scores also follow an extreme-value distribution when the statistics are expressed in terms of a structural alignment score (essentially the sum of reciprocated distances between aligned atoms minus gap penalties). We find that the traditional metric of structural similarity, the rms deviation in atom positions after fitting aligned atoms, follows a different distribution of scores and does not perform as well as the structural alignment score. Comparison of the sequence and structure statistics for pairs of proteins known to be related distantly shows that structural comparison is able to detect approximately twice as many distant relationships as sequence comparison at the same error rate. The comparison also indicates that there are very few pairs with significant similarity in terms of sequence but not structure whereas many pairs have significant similarity in terms of structure but not sequence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The replication of double-stranded plasmids containing a single adduct was analyzed in vivo by means of a sequence heterology that marks the two DNA strands. The single adduct was located within the sequence heterology, making it possible to distinguish trans-lesion synthesis (TLS) events from damage avoidance events in which replication did not proceed through the lesion. When the SOS system of the host bacteria is not induced, the C8-guanine adduct formed by the carcinogen N-2-acetylaminofluorene (AAF) yields less than 1% of TLS events, showing that replication does not readily proceed through the lesion. In contrast, the deacetylated adduct N-(deoxyguanosin-8-yl)-2-aminofluorene yields approximately 70% of TLS events under both SOS-induced and uninduced conditions. These results for TLS in vivo are in good agreement with the observation that AAF blocks DNA replication in vitro, whereas aminofluorene does so only weakly. Induction of the SOS response causes an increase in TLS events through the AAF adduct (approximately 13%). The increase in TLS is accompanied by a proportional increase in the frequency of AAF-induced frameshift mutations. However, the polymerase frameshift error rate per TLS event was essentially constant throughout the SOS response. In an SOS-induced delta umuD/C strain, both US events and mutagenesis are totally abolished even though there is no decrease in plasmid survival. Error-free replication evidently proceeds efficiently by means of the damage avoidance pathway. We conclude that SOS mutagenesis results from increased TLS rather than from an increased frameshift error rate of the polymerase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper introduces the session on advanced speech recognition technology. The two papers comprising this session argue that current technology yields a performance that is only an order of magnitude in error rate away from human performance and that incremental improvements will bring us to that desired level. I argue that, to the contrary, present performance is far removed from human performance and a revolution in our thinking is required to achieve the goal. It is further asserted that to bring about the revolution more effort should be expended on basic research and less on trying to prematurely commercialize a deficient technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the past decade, tremendous advances in the state of the art of automatic speech recognition by machine have taken place. A reduction in the word error rate by more than a factor of 5 and an increase in recognition speeds by several orders of magnitude (brought about by a combination of faster recognition search algorithms and more powerful computers), have combined to make high-accuracy, speaker-independent, continuous speech recognition for large vocabularies possible in real time, on off-the-shelf workstations, without the aid of special hardware. These advances promise to make speech recognition technology readily available to the general public. This paper focuses on the speech recognition advances made through better speech modeling techniques, chiefly through more accurate mathematical modeling of speech sounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mutagenic effect of low linear energy transfer ionizing radiation is reduced for a given dose as the dose rate (DR) is reduced to a low level, a phenomenon known as the direct DR effect. Our reanalysis of published data shows that for both somatic and germ-line mutations there is an opposite, inverse DR effect, with reduction from low to very low DR, the overall dependence of induced mutations being parabolically related to DR, with a minimum in the range of 0.1 to 1.0 cGy/min (rule 1). This general pattern can be attributed to an optimal induction of error-free DNA repair in a DR region of minimal mutability (MMDR region). The diminished activation of repair at very low DRs may reflect a low ratio of induced (“signal”) to spontaneous background DNA damage (“noise”). Because two common DNA lesions, 8-oxoguanine and thymine glycol, were already known to activate repair in irradiated mammalian cells, we estimated how their rates of production are altered upon radiation exposure in the MMDR region. For these and other abundant lesions (abasic sites and single-strand breaks), the DNA damage rate increment in the MMDR region is in the range of 10% to 100% (rule 2). These estimates suggest a genetically programmed optimatization of response to radiation in the MMDR region.