16 resultados para Bis(2-etilhexil)amina
em National Center for Biotechnology Information - NCBI
Resumo:
The chloroethylnitrosourea (CNU) alkylating agents are commonly used for cancer chemotherapy, but their usefulness is limited by severe bone marrow toxicity that causes the cumulative depletion of all hematopoietic lineages (pancytopenia). Bone marrow CNU sensitivity is probably due to the inefficient repair of CNU-induced DNA damage; relative to other tissues, bone marrow cells express extremely low levels of the O6-methylguanine DNA methyltransferase (MGMT) protein that repairs cytotoxic O6-chloroethylguanine DNA lesions. Using a simplified recombinant retroviral vector expressing the human MGMT gene under control of the phosphoglycerate kinase promoter (PGK-MGMT) we increased the capacity of murine bone marrow-derived cells to repair CNU-induced DNA damage. Stable reconstitution of mouse bone marrow with genetically modified, MGMT-expressing hematopoietic stem cells conferred considerable resistance to the cytotoxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a CNU commonly used for chemotherapy. Bone marrow harvested from mice transplanted with PGK-MGMT-transduced cells showed extensive in vitro BCNU resistance. Moreover, MGMT expression in mouse bone marrow conferred in vivo resistance to BCNU-induced pancytopenia and significantly reduced BCNU-induced mortality due to bone marrow hypoplasia. These data demonstrate that increased DNA alkylation repair in primitive hematopoietic stem cells confers multilineage protection from the myelosuppressive effects of BCNU and suggest a possible approach to protecting cancer patients from CNU chemotherapy-related toxicity.
Resumo:
The drought of progress in clinical brain tumor therapy provides an impetus for developing new treatments as well as methods for testing therapeutics in animal models. The inability of traditional assays to simultaneously measure tumor size, location, growth kinetics, and cell kill achieved by a treatment complicates the interpretation of therapy experiments in animal models. To address these issues, tumor volume measurements obtained from serial magnetic resonance images were used to noninvasively estimate cell kill values in individual rats with intracerebral 9L tumors after treatment with 0.5, 1, or 2 × LD10 doses of 1,3-bis(2-chloroethyl)-1-nitrosourea. The calculated cell kill values were consistently lower than those reported using traditional assays. A dose-dependent increase in 9L tumor doubling time after treatment was observed that significantly contributed to the time required for surviving cells to repopulate the tumor mass. This study reveals that increases in animal survival are not exclusively attributable to the fraction of tumor cells killed but rather are a function of the cell kill and repopulation kinetics, both of which vary with treatment dose.
Resumo:
Nicotine at very low doses (5–30 nM) induced large amounts of luteinizing hormone-releasing hormone (LHRH) release, which was monitored as slow membrane depolarizations in the ganglionic neurons of bullfrog sympathetic ganglia. A nicotinic antagonist, d-tubocurarine chloride, completely and reversibly blocked the nicotine-induced LHRH release, but it did not block the nerve-firing-evoked LHRH release. Thus, nicotine activated nicotinic acetylcholine receptors and produced LHRH release via a mechanism that is different from the mechanism for evoked release. Moreover, this release was not caused by Ca2+ influx through either the nicotinic receptors or the voltage-gated Ca2+ channels because the release was increased moderately when the extracellular solution was changed into a Ca2+-free solution that also contained Mg2+ (4 mM) and Cd2+ (200 μM). The release did not depend on Ca2+ release from the intraterminal Ca2+ stores either because fura-2 fluorimetry showed extremely low Ca2+ elevation (≈30 nM) in response to nicotine (30 nM). Moreover, nicotine evoked LHRH release when [Ca2+] elevation in the terminals was prevented by loading the terminals with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid and fura-2. Instead, the nicotine-induced release required extracellular Na+ because substitution of extracellular NaCl with N-methyl-d-glucamine chloride completely blocked the release. The Na+-dependent mechanism was not via Na+ influx through the voltage-gated Na+ channels because the release was not affected by tetrodotoxin (1–50 μM) plus Cd2+ (200 μM). Thus, nicotine at very low concentrations induced LHRH release via a Na+-dependent, Ca2+-independent mechanism.
Resumo:
N1-ethyl-N11-[(cyclopropyl)methyl]-4,8,-diazaundecane (CPENSpm) is a polyamine analogue that represents a new class of antitumor agents that demonstrate phenotype-specific cytotoxic activity. However, the precise mechanism of its selective cytotoxic activity is not known. CPENSpm treatment results in the superinduction of the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SSAT) in sensitive cell types and has been demonstrated to induce programmed cell death (PCD). The catalysis of polyamines by the SSAT/polyamine oxidase (PAO) pathway produces H2O2 as one product, suggesting that PCD produced by CPENSpm may be, in part, due to oxidative stress as a result of H2O2 production. In the sensitive human nonsmall cell line H157, the coaddition of catalase significantly reduces high molecular weight (HMW) DNA (≥50 kb) and nuclear fragmentation. Important to note, specific inhibition of PAO by N,N′-bis(2,3-butadienyl)-1,4-butane-diamine results in a significant reduction of the formation of HMW DNA and nuclear fragmentation. In contrast, the coaddition of catalase or PAO inhibitor has no effect on reducing HMW DNA fragmentation induced by N1-ethyl-N11-[(cycloheptyl)methyl]-4,8,-diazaundecane, which does not induce SSAT and does not deplete intracellular polyamines. These results strongly suggest that H2O2 production by PAO has a role in CPENSpm cytotoxicity in sensitive cells via PCD and demonstrate a potential basis for differential sensitivity to this promising new class of antineoplastic agents. Furthermore, the data suggest a general mechanism by which, under certain stimuli, cells can commit suicide through catabolism of the ubiquitous intracellular polyamines.
Resumo:
Single-channel recordings were obtained from Chinese hamster ovary cells transfected with the N-methyl-d-aspartate (NMDA) receptor subunit NR1 in combination with NR2A, NR2B, NR2C, or NR2A/NR2B. NMDA-activated currents were recorded under control conditions and in the presence of a thiol reductant (DTT), an oxidant (5,5′-dithio-bis[2-nitrobenzoic acid], DTNB), or the noncompetitive antagonist CP101,606 (CP). For all subunit combinations, DTT increased the frequency of channel opening when compared with DTNB. In addition, channels obtained from NR1/NR2A-transfected cells also exhibited a pronounced difference in mean open dwell-time between redox conditions. CP dramatically reduced both the open dwell-time and frequency of channel opening of NR1/NR2B-containing receptors, but only modestly inhibited NR1/NR2A and NR1/NR2C channel activity. A small number of patches obtained from cells transfected with NR1/NR2A/NR2B had channels with properties intermediate to NR1/NR2A and NR1/NR2B receptors, including insensitivity to CP block but redox properties similar to NR1/NR2B, consistent with the coassembly of NR2A with NR2B. Hence, NMDA receptors containing multiple types of NR2 subunits can have functionally distinguishable attributes.
Resumo:
We have studied signaling mechanisms that stimulate exocytosis and luteinizing hormone secretion in isolated male rat pituitary gonadotropes. As judged by reverse hemolytic plaque assays, phorbol-12-myristate-13-acetate (PMA) stimulates as many gonadotropes to secrete as does gonadotropin-releasing hormone (GnRH). However, PMA and GnRH use different signaling pathways. The secretagogue action of GnRH is not very sensitive to bisindolylmaleimide I, an inhibitor of protein kinase C, but is blocked by loading cells with a calcium chelator, 1,2-bis-(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid. The secretagogue action of PMA is blocked by bisindolylmaleimide I and is not very sensitive to the intracellular calcium chelator. GnRH induces intracellular calcium elevations, whereas PMA does not. As judged by amperometric measurements of quantal catecholamine secretion from dopamine- or serotonin-loaded gonadotropes, the secretagogue action of PMA develops more slowly (in several minutes) than that of GnRH. We conclude that exocytosis of secretory vesicles can be stimulated independently either by calcium elevations or by activation of protein kinase C.
Resumo:
We have studied the effect of the cholinergic agonist carbachol on the spontaneous release of glutamate in cultured rat hippocampal cells. Spontaneous excitatory postsynaptic currents (sEPSCs) through glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type channels were recorded by means of the patch-clamp technique. Carbachol increased the frequency of sEPSCs in a concentration-dependent manner. The kinetic properties of the sEPSCs and the amplitude distribution histograms were not affected by carbachol, arguing for a presynaptic site of action. This was confirmed by measuring the turnover of the synaptic vesicular pool by means of the fluorescent dye FM 1–43. The carbachol-induced increase in sEPSC frequency was not mimicked by nicotine, but could be blocked by atropine or by pirenzepine, a muscarinic cholinergic receptor subtype M1 antagonist. Intracellular Ca2+ signals recorded with the fluorescent probe Fluo-3 indicated that carbachol transiently increased intracellular Ca2+ concentration. Since, however, carbachol still enhanced the sEPSC frequency in bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetate-loaded cells, this effect could not be attributed to the rise in intracellular Ca2+ concentration. On the other hand, the protein kinase inhibitor staurosporine as well as a down-regulation of protein kinase C by prolonged treatment of the cells with 4β-phorbol 12-myristate 13-acetate inhibited the carbachol effect. This argues for an involvement of protein kinase C in presynaptic regulation of spontaneous glutamate release. Adenosine, which inhibits synaptic transmission, suppressed the carbachol-induced stimulation of sEPSCs by a G protein-dependent mechanism activated by presynaptic A1-receptors.
Resumo:
In the COS7 cells transfected with cDNAs of the Kir6.2, SUR2A, and M1 muscarinic receptors, we activated the ATP-sensitive potassium (KATP) channel with a K+ channel opener and recorded the whole-cell KATP current. The KATP current was reversibly inhibited by the stimulation of the M1 receptor, which is linked to phospholipase C (PLC) by the Gq protein. The receptor-mediated inhibition was observed even when protein kinase C (PKC) was inhibited by H-7 or by chelating intracellular Ca2+ with 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetate (BAPTA) included in the pipette solution. However, the receptor-mediated inhibition was blocked by U-73122, a PLC inhibitor. M1-receptor stimulation failed to inhibit the KATP current activated by the injection of exogenous phosphatidylinositol 4,5-bisphosphate (PIP2) through the whole-cell patch pipette. The receptor-mediated inhibition became irreversible when the replenishment of PIP2 was blocked by wortmannin (an inhibitor of phosphatidylinositol kinases), or by including adenosine 5′-[β,γ–imido]triphosphate (AMPPNP, a nonhydrolyzable ATP analogue) in the pipette solution. In inside-out patch experiments, the ATP sensitivity of the KATP channel was significantly higher when the M1 receptor in the patch membrane was stimulated by acetylcholine. The stimulatory effect of pinacidil was also attenuated under this condition. We postulate that stimulation of PLC-linked receptors inhibited the KATP channel by increasing the ATP sensitivity, not through PKC activation, but most probably through changing PIP2 levels.
Resumo:
Recycling of vesicles of the regulated secretory pathway presumably involves passage through an early endosomal compartment as an intermediate step. To learn more about the involvement of endosomes in the recycling of synaptic and secretory vesicles we studied in vitro fusion of early endosomes derived from pheochromocytoma (PC12) cells. Fusion was not affected by cleavage of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins synaptobrevin and syntaxin 1 that operate at the exocytotic limb of the pathway. Furthermore, fusion was inhibited by the fast Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid but not by the slow Ca2+ chelator EGTA. Endosome fusion was restored by the addition of Ca2+ with an optimum at a free Ca2+ concentration of 0.3 × 10−6 M. Other divalent cations did not substitute for Ca2+. A membrane-permeant EGTA derivative caused inhibition of fusion, which was reversed by addition of Ca2+. We conclude that the fusion of early endosomes participating in the recycling of synaptic and neurosecretory vesicles is mediated by a set of SNAREs distinct from those involved in exocytosis and requires the local release of Ca2+ from the endosomal interior.
Resumo:
Polyamines are required for optimal growth and function of cells. Regulation of their cellular homeostasis is therefore tightly controlled. The key regulatory enzyme for polyamine catabolism is the spermidine/spermine N1-acetyltransferase (SSAT). Depletion of cellular polyamines has been associated with inhibition of growth and programmed cell death. To investigate the physiological function SSAT, we generated a transgenic rat line overexpressing the SSAT gene under the control of the inducible mouse metallothionein I promoter. Administration of zinc resulted in a marked induction of pancreatic SSAT, overaccumulation of putrescine, and appearance of N1-acetylspermidine with extensive depletion of spermidine and spermine in transgenic animals. The activation of pancreatic polyamine catabolism resulted in acute pancreatitis. In nontransgenic animals, an equal dose of zinc did not affect pancreatic polyamine pools, nor did it induce pancreatitis. Acetylated polyamines, products of the SSAT-catalyzed reaction, are metabolized further by the polyamine oxidase (PAO) generating hydrogen peroxide, which might cause or contribute to the pancreatic inflammatory process. Administration of specific PAO inhibitor, MDL72527 [N1,N2-bis(2,3-butadienyl)-1,4-butanediamine], however, did not affect the histological score of the pancreatitis. Induction of SSAT by the polyamine analogue N1,N11-diethylnorspermine reduced pancreatic polyamines levels only moderately and without signs of organ inflammation. In contrast, the combination of N1,N11-diethylnorspermine with MDL72527 dramatically activated SSAT, causing profound depletion of pancreatic polyamines and acute pancreatitis. These results demonstrate that acute induction of SSAT leads to pancreatic inflammation, suggesting that sufficient pools of higher polyamine levels are essential to maintain pancreatic integrity. This inflammatory process is independent of the production of hydrogen peroxide by PAO.
Resumo:
(RS)-2-cis, 4-trans-abscisic acid (ABA), a naturally occurring plant stress hormone, elicited rapid agonist-specific changes in myo-inositol hexakisphosphate (InsP6) measured in intact guard cells of Solanum tuberosum (n = 5); these changes were not reproduced by (RS)-2-trans, 4-trans-abscisic acid, an inactive stereoisomer of ABA (n = 4). The electrophysiological effects of InsP6 were assessed on both S. tuberosum (n = 14) and Vicia faba (n = 6) guard cell protoplasts. In both species, submicromolar concentrations of InsP6, delivered through the patch electrode, mimicked the inhibitory effects of ABA and internal calcium (Cai2+) on the inward rectifying K+ current, IK,in, in a dose-dependent manner. Steady state block of IK,in by InsP6 was reached much more quickly in Vicia (3 min at ≈1 μM) than Solanum (20–30 min). The effects of InsP6 on IK,in were specific to the myo-inositol isomer and were not elicited by other conformers of InsP6 (e.g., scyllo- or neo-). Chelation of Ca2+ by inclusion of 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid or EGTA in the patch pipette together with InsP6 prevented the inhibition of IK,in, suggesting that the effect is Ca2+ dependent. InsP6 was ≈100-fold more potent than Ins(1,4,5)P3 in modulating IK,in. Thus ABA increases InsP6 in guard cells, and InsP6 is a potent Ca2+-dependent inhibitor of IK,in. Taken together, these results suggest that InsP6 may play a major role in the physiological response of guard cells to ABA.
Resumo:
Cerebellar Purkinje neurons receive two major excitatory inputs, the climbing fibers (CFs) and parallel fibers (PFs). Simultaneous, repeated activation of CFs and PFs results in the long-term depression (LTD) of the amplitude of PF-evoked synaptic currents. To induce LTD, activation of CFs may be substituted with depolarization of the Purkinje neuron to turn on voltage-activated calcium channels and increase the intracellular calcium concentration. The role of PFs in the induction of LTD, however, is less clear. PFs activate glutamate metabotropic receptors that increase phosphoinositide turnover and elevate cytosolic inositol 1,4,5-trisphosphate (InsP3). It has been proposed that calcium release from intracellular stores via InsP3 receptors may be important in the induction of LTD. We studied the role of InsP3 in the induction of LTD by photolytic release of InsP3 from its biologically inactive “caged” precursor in voltage-clamped Purkinje neurons in acutely prepared cerebellar slices. We find that InsP3-evoked calcium release is as effective in LTD induction as activation of PFs. InsP3-induced LTD was prevented by calcium chelator 1,2-bis(2-amino phenoxy)ethane-N,N,N′,N′-tetraacetic acid. LTD produced either by repeated activation of PFs combined with depolarization (PF+ΔV), or by InsP3 combined with depolarization (InsP3+ΔV) saturated at ≈50%. Maximal LTD induced by PF+ΔV could not be further increased by InsP3+ΔV and vice versa, which suggests that both protocols for induction of LTD share a common path. In addition to inducing LTD, photo-release of InsP3+ΔV resulted in the rebound potentiation of inhibitory synaptic currents. In the presence of heparin, an InsP3 receptor antagonist, repeated activation of PF+ΔV failed to induce LTD, suggesting that InsP3 receptors play an important role in LTD induction under physiological conditions.
Resumo:
Applied molecular evolution is a rapidly developing technology that can be used to create and identify novel enzymes that nature has not selected. An important application of this technology is the creation of highly drug-resistant enzymes for cancer gene therapy. Seventeen O6-alkylguanine-DNA alkyltransferase (AGT) mutants highly resistant to O6-benzylguanine (BG) were identified previously by screening 8 million variants, using genetic complementation in Escherichia coli. To examine the potential of these mutants for use in humans, the sublibrary of AGT clones was introduced to human hematopoietic cells and stringently selected for resistance to killing by the combination of BG and 1,3-bis(2-chloroethyl)-1-nitrosourea. This competitive analysis between the mutants in human cells revealed three AGT mutants that conferred remarkable resistance to the combination of BG and 1,3-bis(2-chloroethyl)-1-nitrosourea. Of these, one was recovered significantly more frequently than the others. Upon further analysis, this mutant displayed a level of BG resistance in human hematopoietic cells greater than that of any previously reported mutant.
Resumo:
Classical conditioning of Aplysia's siphon-withdrawal reflex is thought to be due to a presynaptic mechanism-activity-dependent presynaptic facilitation of sensorimotor connections. Recent experiments with sensorimotor synapses in dissociated cell culture, however, provide an alternative cellular mechanism for classical conditioning-Hebbian long-term potentiation (LTP) of sensorimotor connections. Induction of Hebbian LTP of these connections is mediated by activation of N-methyl-D-aspartate-related receptors and requires the postsynaptic elevation of intracellular Ca2+. To determine whether the enhancement of sensorimotor synapses during classical conditioning in Aplysia-like LTP of sensorimotor synapses in culture-also depends upon the elevation of postsynaptic Ca2+, we carried out experiments involving the cellular analog of classical conditioning of siphon withdrawal. We examined changes in the strength of monosynaptic siphon sensorimotor connections in the abdominal ganglion of Aplysia following paired presentations of sensory neuron activation and tail nerve shock. This training regimen resulted in significant enhancement of the monosynaptic sensorimotor excitatory postsynaptic potential, as compared with the sensorimotor excitatory postsynaptic potential in preparations that received only test stimulation. Infusing the motor neuron with 1,2-bis(2-aminophenoxy)ethane-N,N-N',N'-tetraacetic acid, a specific chelator of intracellular Ca2+, prior to paired stimulation training blocked this synaptic enhancement. Our results implicate a postsynaptic, possibly Hebbian, mechanism in classical conditioning in Aplysia.
Resumo:
Antibody-directed enzyme prodrug therapy, ADEPT, is a recent approach to targeted cancer chemotherapy intended to diminish the nonspecific toxicity associated with many commonly used chemotherapeutic agents. Most ADEPT systems incorporate a bacterial enzyme, and thus their potential is reduced because of the immunogenicity of that component of the conjugate. This limitation can be circumvented by the use of a catalytic antibody, which can be "humanized," in place of the bacterial enzyme catalyst. We have explored the scope of such antibody-directed "abzyme" prodrug therapy, ADAPT, to evaluate the potential for a repeatable targeted cancer chemotherapy. We report the production of a catalytic antibody that can hydrolyze the carbamate prodrug 4-[N,N-bis(2-chloroethyl)]aminophenyl-N-[(1S)-(1,3- dicarboxy)propyl]carbamate (1) to generate the corresponding cytotoxic nitrogen mustard (Km = 201 microM, kcat = 1.88 min-1). In vitro studies with this abzyme, EA11-D7, and prodrug 1 lead to a marked reduction in viability of cultured human colonic carcinoma (LoVo) cells relative to appropriate controls. In addition, we have found a good correlation between antibody catalysis as determined by this cytotoxicity assay in vitro and competitive binding studies of candidate abzymes to the truncated transition-state analogue ethyl 4-nitrophenylmethylphosphonate. This cell-kill assay heralds a general approach to direct and rapid screening of antibody libraries for catalysts.