4 resultados para Birds of prey
em National Center for Biotechnology Information - NCBI
Resumo:
Batrachotoxins, including many congeners not previously described, were detected, and relative amounts were measured by using HPLC-mass spectrometry, in five species of New Guinean birds of the genus Pitohui as well as a species of a second toxic bird genus, Ifrita kowaldi. The alkaloids, identified in feathers and skin, were batrachotoxinin-A cis-crotonate (1), an allylically rearranged 16-acetate (2), which can form from 1 by sigmatropic rearrangement under basic conditions, batrachotoxinin-A and an isomer (3 and 3a, respectively), batrachotoxin (4), batrachotoxinin-A 3′-hydroxypentanoate (5), homobatrachotoxin (6), and mono- and dihydroxylated derivatives of homobatrachotoxin. The highest levels of batrachotoxins were generally present in the contour feathers of belly, breast, or legs in Pitohui dichrous, Pitohui kirhocephalus, and Ifrita kowaldi. Lesser amounts are found in head, back, tail, and wing feathers. Batrachotoxin (4) and homobatrachotoxin (6) were found only in feathers and not in skin. The levels of batrachotoxins varied widely for different populations of Pitohui and Ifrita, a result compatible with the hypothesis that these birds are sequestering toxins from a dietary source.
Resumo:
Aposematic signals that warn predators of the noxious qualities of prey gain their greatest selective advantage when predators have already experienced similar signals. Existing theory explains how such signals can spread through selective advantage after they are present at some critical frequency, but is unclear about how warning signals can be selectively advantageous when the trait is initially rare (i.e., when it first arises through mutation) and predators are naive. When aposematism is controlled by a maternal effect gene, the difficulty of initial rarity may be overcome. Unlike a zygotically expressed gene, a maternally expressed aposematism gene will be hidden from selection because it is not phenotypically expressed in the first individual with the mutation. Furthermore, the first individual carrying the new mutation will produce an entire family of aposematic offspring, thereby providing an immediate fitness advantage to this gene.
Resumo:
With the aim of elucidating in greater detail the genealogical origin of the present domestic fowls of the world, we have determined mtDNA sequences of the D-loop regions for a total of 21 birds, of which 12 samples belong to red junglefowl (Gallus gallus) comprising three subspecies (six Gallus gallus gallus, three Gallus gallus spadiceus, and three Gallus gallus bankiva) and nine represent diverse domestic breeds (Gallus gallus domesticus). We also sequenced four green junglefowl (Gallus varius), two Lafayette's junglefowl (Gallus lafayettei), and one grey junglefowl (Gallus sonneratii). We then constructed a phylogenetic tree for these birds by the use of nucleotide sequences, choosing the Japanese quail (Coturnix coturnix japonica) as an outgroup. We found that a continental population of G. g. gallus was the real matriarchic origin of all the domestic poultries examined in this study. It is also of particular interest that there were no discernible differences among G. gallus subspecies; G. g. bankiva was a notable exception. This was because G. g. spadiceus and a continental population of G. g. gallus formed a single cluster in the phylogenetic tree. G. g. bankiva, on the other hand, was a distinct entity, thus deserving its subspecies status. It implies that a continental population of G. g. gallus sufficed as the monophyletic ancestor of all domestic breeds. We also discussed a possible significance of the initial dispersal pattern of the present domestic fowls, using the phylogenetic tree.
Resumo:
Predators of herbivorous animals can affect plant populations by altering herbivore density, behavior, or both. To test whether the indirect effect of predators on plants arises from density or behavioral responses in a herbivore population, we experimentally examined the dynamics of terrestrial food chains comprised of old field plants, leaf-chewing grasshoppers, and spider predators in Northeast Connecticut. To separate the effects of predators on herbivore density from the effects on herbivore behavior, we created two classes of spiders: (i) risk spiders that had their feeding mouth parts glued to render them incapable of killing prey and (ii) predator spiders that remained unmanipulated. We found that the effect of predators on plants resulted from predator-induced changes in herbivore behavior (shifts in activity time and diet selection) rather than from predator-induced changes in grasshopper density. Neither predator nor risk spiders had a significant effect on grasshopper density relative to a control. This demonstrates that the behavioral response of prey to predators can have a strong impact on the dynamics of terrestrial food chains. The results make a compelling case to examine behavioral as well as density effects in theoretical and empirical research on food chain dynamics.