89 resultados para Biological Evolution

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biologists should help to guide a process of cultural evolution in which society determines how much effort, if any, is ethically required to preserve options in biological evolution. Evolutionists, conservation biologists, and ecologists should be doing more research to determine actions that would best help to avoid foreclosing evolutionary options.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is quite possible that the level of atmospheric oxygen has varied (roughly between 15 and 30% O2) over the past 550 million years. This variation is suggested by modeling of the carbon and sulfur cycles, by the excessive sediment burial of organic matter that accompanied the advent of large vascular land plants, and by recent physiological studies that relate to biological evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or "punctuations" of all sizes. In the critical state, events which would otherwise be uncoupled become correlated. The apparent, historical contingency in many sciences, including geology, biology, and economics, finds a natural interpretation as a self-organized critical phenomenon. These ideas are discussed in the context of simple mathematical models of sandpiles and biological evolution. Insights are gained not only from numerical simulations but also from rigorous mathematical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have measured the stability and stoichiometry of variants of the human p53 tetramerization domain to assess the effects of mutation on homo- and hetero-oligomerization. The residues chosen for mutation were those in the hydrophobic core that we had previously found to be critical for its stability but are not conserved in human p73 or p51 or in p53-related proteins from invertebrates or vertebrates. The mutations introduced were either single natural mutations or combinations of mutations present in p53-like proteins from different species. Most of the mutations were substantially destabilizing when introduced singly. The introduction of multiple mutations led to two opposite effects: some combinations of mutations that have occurred during the evolution of the hydrophobic core of the domain in p53-like proteins had additive destabilizing effects, whereas other naturally occurring combinations of mutations had little or no net effect on the stability, there being mutually compensating effects of up to 9.5 kcal/mol of tetramer. The triple mutant L332V/F341L/L344I, whose hydrophobic core represents that of the chicken p53 domain, was nearly as stable as the human domain but had impaired hetero-oligomerization with it. Thus, engineering of a functional p53 variant with a reduced capacity to hetero-oligomerize with wild-type human p53 can be achieved without any impairment in the stability and subunit affinity of the engineered homo-oligomer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular methods are used widely to measure genetic diversity within populations and determine relationships among species. However, it is difficult to observe genomic evolution in action because these dynamics are too slow in most organisms. To overcome this limitation, we sampled genomes from populations of Escherichia coli evolving in the laboratory for 10,000 generations. We analyzed the genomes for restriction fragment length polymorphisms (RFLP) using seven insertion sequences (IS) as probes; most polymorphisms detected by this approach reflect rearrangements (including transpositions) rather than point mutations. The evolving genomes became increasingly different from their ancestor over time. Moreover, tremendous diversity accumulated within each population, such that almost every individual had a different genetic fingerprint after 10,000 generations. As has been often suggested, but not previously shown by experiment, the rates of phenotypic and genomic change were discordant, both across replicate populations and over time within a population. Certain pivotal mutations were shared by all descendants in a population, and these are candidates for beneficial mutations, which are rare and difficult to find. More generally, these data show that the genome is highly dynamic even over a time scale that is, from an evolutionary perspective, very brief.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models of evolutionary processes postulate that new alleles appear in populations through random spontaneous mutation. Alleles that confer a competitive advantage in particular environments are selected and populations can be taken over by individuals expressing these advantageous mutations. We have studied the evolutionary process by using Escherichia coli cultures incubated for prolonged periods of time in stationary phase. The populations of surviving cells were shown to be highly dynamic, even after many months of incubation. Evolution proceeded along different paths even when the initial conditions were identical. As cultures aged, the takeovers by fitter mutants were incomplete, resulting in the coexistence of multiple mutant forms and increased microbial diversity. Thus, the study of bacterial populations in stationary phase provides a model system for understanding the evolution of diversity in natural populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social behaviors are often targets of natural selection among higher organisms, but quantifying the effects of such selection is difficult. We have used the bacterium Myxococcus xanthus as a model system for studying the evolution of social interactions. Changes in the social behaviors of 12 M. xanthus populations were quantified after 1,000 generations of evolution in a liquid habitat, in which interactions among individuals were continually hindered by shaking and low cell densities. Derived lineages were compared with their ancestors with respect to maximum growth rate, motility rates on hard and soft agar, fruiting body formation ability, and sporulation frequency during starvation. Improved performance in the liquid selective regime among evolved lines was usually associated with significant reductions in all of the major social behaviors of M. xanthus. Maintenance of functional social behaviors is apparently detrimental to fitness under asocial growth conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolution of HIV-1 env sequences was studied in 15 seroconverting injection drug users selected for differences in the extent of CD4 T cell decline. The rates of increase of either sequence diversity at a given visit or divergence from the first seropositive visit were both higher in progressors than in nonprogressors. Viral evolution in individuals with rapid or moderate disease progression showed selection favoring nonsynonymous mutations, while nonprogressors with low viral loads selected against the nonsynonymous mutations that might have resulted in viruses with higher levels of replication. For 10 of the 15 subjects no single variant predominated over time. Evolution away from a dominant variant was followed frequently at a later time point by return to dominance of strains closely related to that variant. The observed evolutionary pattern is consistent with either selection against only the predominant virus or independent evolution occurring in different environments within the host. Differences in the level to which CD4 T cells fall in a given time period reflect not only quantitative differences in accumulation of mutations, but differences in the types of mutations that provide the best adaptation to the host environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Attempts to calibrate bacterial evolution have relied on the assumption that rates of molecular sequence divergence in bacteria are similar to those of higher eukaryotes, or to those of the few bacterial taxa for which ancestors can be reliably dated from ecological or geological evidence. Despite similarities in the substitution rates estimated for some lineages, comparisons of the relative rates of evolution at different classes of nucleotide sites indicate no basis for their universal application to all bacteria. However, there is evidence that bacteria have a constant genome-wide mutation rate on an evolutionary time scale but that this rate differs dramatically from the rate estimated by experimental methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological speciation ultimately results in prezygotic isolation—the inability of incipient species to mate with one another–but little is understood about the selection pressures and genetic changes that generate this outcome. The genus Chlamydomonas comprises numerous species of unicellular green algae, including numerous geographic isolates of the species C. reinhardtii. This diverse collection has allowed us to analyze the evolution of two sex-related genes: the mid gene of C. reinhardtii, which determines whether a gamete is mating-type plus or minus, and the fus1 gene, which dictates a cell surface glycoprotein utilized by C. reinhardtii plus gametes to recognize minus gametes. Low stringency Southern analyses failed to detect any fus1 homologs in other Chlamydomonas species and detected only one mid homolog, documenting that both genes have diverged extensively during the evolution of the lineage. The one mid homolog was found in C. incerta, the species in culture that is most closely related to C. reinhardtii. Its mid gene carries numerous nonsynonymous and synonymous codon changes compared with the C. reinhardtii mid gene. In contrast, very high sequence conservation of both the mid and fus1 sequences is found in natural isolates of C. reinhardtii, indicating that the genes are not free to drift within a species but do diverge dramatically between species. Striking divergence of sex determination and mate recognition genes also has been encountered in a number of other eukaryotic phyla, suggesting that unique, and as yet unidentified, selection pressures act on these classes of genes during the speciation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integrin family of cell surface receptors is strongly conserved in higher animals, but the evolutionary history of integrins is obscure. We have identified and sequenced cDNAs encoding integrin β subunits from a coral (phylum Cnidaria) and a sponge (Porifera), indicating that these proteins existed in the earliest stages of metazoan evolution. The coral βCn1 and, especially, the sponge βPo1 sequences are the most divergent of the “β1-class” integrins and share a number of features not found in any other vertebrate or invertebrate integrins. Perhaps the greatest difference from other β subunits is found in the third and fourth repeats of the cysteine-rich stalk, where the generally conserved spacings between cysteines are highly variable, but not similar, in βCn1 and βPo1. Alternatively spliced cDNAs, containing a stop codon about midway through the full-length translated sequence, were isolated from the sponge library. These cDNAs appear to define a boundary between functional domains, as they would encode a protein that includes the globular ligand-binding head but would be missing the stalk, transmembrane, and cytoplasmic domains. These and other sequence comparisons with vertebrate integrins are discussed with respect to models of integrin structure and function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An evolutionary process is simulated with a simple spin-glass-like model of proteins to examine the origin of folding ability. At each generation, sequences are randomly mutated and subjected to a simulation of the folding process based on the model. According to the frequency of local configurations at the active sites, sequences are selected and passed to the next generation. After a few hundred generations, a sequence capable of folding globally into a native conformation emerges. Moreover, the selected sequence has a distinct energy minimum and an anisotropic funnel on the energy surface, which are the imperative features for fast folding of proteins. The proposed model reveals that the functional selection on the local configurations leads a sequence to fold globally into a conformation at a faster rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential rates of nucleotide substitutions among taxa are a common observation in molecular phylogenetic studies, yet links between rates of DNA evolution and traits or behaviors of organisms have proved elusive. Likelihood ratio testing is used here for the first time to evaluate specific hypotheses that account for the induction of shifts in rates of DNA evolution. A molecular phylogenetic investigation of mutualist (lichen-forming fungi and fungi associated with liverworts) and nonmutualist fungi revealed four independent transitions to mutualism. We demonstrate a highly significant association between mutualism and increased rates of nucleotide substitutions in nuclear ribosomal DNA, and we demonstrate that a transition to mutualism preceded the rate acceleration of nuclear ribosomal DNA in these lineages. Our results suggest that the increased rate of evolution after the adoption of a mutualist lifestyle is generalized across the genome of these mutualist fungi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The P element, originally described in Drosophila melanogaster, is one of the best-studied eukaryotic transposable elements. In an attempt to understand the evolutionary dynamics of the P element family, an extensive phylogenetic analysis of 239 partial P element sequences has been completed. These sequences were obtained from 40 species in the Drosophila subgenus Sophophora. The phylogeny of the P element family is examined in the context of a phylogeny of the species in which these elements are found. An interesting feature of many of the species examined is the coexistence in the same genome of P sequences belonging to two or more divergent subfamilies. In general, P elements in Drosophila have been transmitted vertically from generation to generation over evolutionary time. However, four unequivocal cases of horizontal transfer, in which the element was transferred between species, have been identified. In addition, the P element phylogeny is best explained in numerous instances by horizontal transfer at various times in the past. These observations suggest that, as with some other transposable elements, horizontal transfer may play an important role in the maintenance of P elements in natural populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor family. Portions of the gene encoding KGF were amplified during primate evolution and are present in multiple nonprocessed copies in the human genome. Nucleotide analysis of a representative sampling of these KGF-like sequences indicated that they were at least 95% identical to corresponding regions of the KGF gene. To localize these sequences to specific chromosomal sites in human and higher primates, we used fluorescence in situ hybridization. In human, using a cosmid probe encoding KGF exon 1, we assigned the location of the KGF gene to chromosome 15q15–21.1. In addition, copies of KGF-like sequences hybridizing only with a cosmid probe encoding exons 2 and 3 were localized to dispersed sites on chromosome 2q21, 9p11, 9q12–13, 18p11, 18q11, 21q11, and 21q21.1. The distribution of KGF-like sequences suggests a role for alphoid DNA in their amplification and dispersion. In chimpanzee, KGF-like sequences were observed at five chromosomal sites, which were each homologous to sites in human, while in gorilla, a subset of four of these homologous sites was identified; in orangutan two sites were identified, while gibbon exhibited only a single site. The chromosomal localization of KGF sequences in human and great ape genomes indicates that amplification and dispersion occurred in multiple discrete steps, with initial KGF gene duplication and dispersion taking place in gibbon and involving loci corresponding to human chromosomes 15 and 21. These findings support the concept of a closer evolutionary relationship of human and chimpanzee and a possible selective pressure for such dispersion during the evolution of higher primates.