39 resultados para Biochemical and molecularcharacterization

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The saliva of blood-sucking arthropods contains powerful pharmacologically active substances and may be a vaccine target against some vector-borne diseases. Subtractive cloning combined with biochemical approaches was used to discover activities in the salivary glands of the hematophagous fly Lutzomyia longipalpis. Sequences of nine full-length cDNA clones were obtained, five of which are possibly associated with blood-meal acquisition, each having cDNA similarity to: (i) the bed bug Cimex lectularius apyrase, (ii) a 5′-nucleotidase/phosphodiesterase, (iii) a hyaluronidase, (iv) a protein containing a carbohydrate-recognition domain (CRD), and (v) a RGD-containing peptide with no significant matches to known proteins in the blast databases. Following these findings, we observed that the salivary apyrase activity of L. longipalpis is indeed similar to that of Cimex apyrase in its metal requirements. The predicted isoelectric point of the putative apyrase matches the value found for Lutzomyia salivary apyrase. A 5′-nucleotidase, as well as hyaluronidase activity, was found in the salivary glands, and the CRD-containing cDNA matches the N-terminal sequence of the HPLC-purified salivary anticlotting protein. A cDNA similar to α-amylase was discovered and salivary enzymatic activity demonstrated for the first time in a blood-sucking arthropod. Full-length clones were also found coding for three proteins of unknown function matching, respectively, the N-terminal sequence of an abundant salivary protein, having similarity to the CAP superfamily of proteins and the Drosophila yellow protein. Finally, two partial sequences are reported that match possible housekeeping genes. Subtractive cloning will considerably enhance efforts to unravel the salivary pharmacopeia of blood-sucking arthropods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma membrane vesicles from red beet (Beta vulgaris L.) storage tissue contain two prominent major intrinsic protein species of 31 and 27 kD (X. Qi, C.Y Tai, B.P. Wasserman [1995] Plant Physiol 108: 387–392). In this study affinity-purified antibodies were used to investigate their localization and biochemical properties. Both plasma membrane intrinsic protein (PMIP) subgroups partitioned identically in sucrose gradients; however, each exhibited distinct properties when probed for multimer formation, and by limited proteolysis. The tendency of each PMIP species to form disulfide-linked aggregates was studied by inclusion of various sulfhydryl agents during tissue homogenization and vesicle isolation. In the absence of dithiothreitol and sulfhydryl reagents, PMIP27 yielded a mixture of monomeric and aggregated species. In contrast, generation of a monomeric species of PMIP31 required the addition of dithiothreitol, iodoacetic acid, or N-ethylmaleimide. Mixed disulfide-linked heterodimers between the PMIP31 and PMIP27 subgroups were not detected. Based on vectorial proteolysis of right-side-out vesicles with trypsin and hydropathy analysis of the predicted amino acid sequence derived from the gene encoding PMIP27, a topological model for a PMIP27 was established. Two exposed tryptic cleavage sites were identified from proteolysis of PMIP27, and each was distinct from the single exposed site previously identified in surface loop C of a PMIP31. Although the PMIP31 and PMIP27 species both contain integral proteins that appear to occur within a single vesicle population, these results demonstrate that each PMIP subgroup responds differently to perturbations of the membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 135-kD actin-bundling protein was purified from pollen tubes of lily (Lilium longiflorum) using its affinity to F-actin. From a crude extract of the pollen tubes, this protein was coprecipitated with exogenously added F-actin and then dissociated from F-actin by treating it with high-ionic-strength solution. The protein was further purified sequentially by chromatography on a hydroxylapatite column, a gel-filtration column, and a diethylaminoethyl-cellulose ion-exchange column. In the present study, this protein is tentatively referred to as P-135-ABP (Plant 135-kD Actin-Bundling Protein). By the elution position from a gel-filtration column, we estimated the native molecular mass of purified P-135-ABP to be 260 kD, indicating that it existed in a dimeric form under physiological conditions. This protein bound to and bundled F-actin prepared from chicken breast muscle in a Ca2+-independent manner. The binding of 135-P-ABP to actin was saturated at an approximate stoichiometry of 26 actin monomers to 1 dimer of P-135-ABP. By transmission electron microscopy of thin sections, we observed cross-bridges between F-actins with a longitudinal periodicity of 31 nm. Immunofluorescence microscopy using rhodamine-phalloidin and antibodies against the 135-kD polypeptide showed that P-135-ABP was colocalized with bundles of actin filaments in lily pollen tubes, leading us to conclude that it is the factor responsible for bundling the filaments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synaptotagmins (Syts) are a family of vesicle proteins that have been implicated in both regulated neurosecretion and general membrane trafficking. Calcium-dependent interactions mediated through their C2 domains are proposed to contribute to the mechanism by which Syts trigger calcium-dependent neurotransmitter release. Syt IV is a novel member of the Syt family that is induced by cell depolarization and has a rapid rate of synthesis and a short half-life. Moreover, the C2A domain of Syt IV does not bind calcium. We have examined the biochemical and functional properties of the C2 domains of Syt IV. Consistent with its non–calcium binding properties, the C2A domain of Syt IV binds syntaxin isoforms in a calcium-independent manner. In neuroendocrine pheochromocytoma (PC12) cells, Syt IV colocalizes with Syt I in the tips of the neurites. Microinjection of the C2A domain reveals that calcium-independent interactions mediated through this domain of Syt IV inhibit calcium-mediated neurotransmitter release from PC12 cells. Conversely, the C2B domain of Syt IV contains calcium binding properties, which permit homo-oligomerization as well as hetero-oligomerization with Syt I. Our observation that different combinatorial interactions exist between Syt and syntaxin isoforms, coupled with the calcium stimulated hetero-oligomerization of Syt isoforms, suggests that the secretory machinery contains a vast repertoire of biochemical properties for sensing calcium and regulating neurotransmitter release accordingly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Kinesin is a processive motor protein: A single molecule can walk continuously along a microtubule for several micrometers, taking hundreds of 8-nm steps without dissociating. To elucidate the biochemical and structural basis for processivity, we have engineered a heterodimeric one-headed kinesin and compared its biochemical properties to those of the wild-type two-headed molecule. Our construct retains the functionally important neck and tail domains and supports motility in high-density microtubule gliding assays, though it fails to move at the single-molecule level. We find that the ATPase rate of one-headed kinesin is 3–6 s−1 and that detachment from the microtubule occurs at a similar rate (3 s−1). This establishes that one-headed kinesin usually detaches once per ATP hydrolysis cycle. Furthermore, we identify the rate-limiting step in the one-headed hydrolysis cycle as detachment from the microtubule in the ADP⋅Pi state. Because the ATPase and detachment rates are roughly an order of magnitude lower than the corresponding rates for two-headed kinesin, the detachment of one head in the homodimer (in the ADP⋅Pi state) must be accelerated by the other head. We hypothesize that this results from internal strain generated when the second head binds. This idea accords with a hand-over-hand model for processivity in which the release of the trailing head is contingent on the binding of the forward head. These new results, together with previously published ones, allow us to propose a pathway that defines the chemical and mechanical cycle for two-headed kinesin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nucleotide excision repair (NER) and DNA mismatch repair are required for some common processes although the biochemical basis for this requirement is unknown. Saccharomyces cerevisiae RAD14 was identified in a two-hybrid screen using MSH2 as “bait,” and pairwise interactions between MSH2 and RAD1, RAD2, RAD3, RAD10, RAD14, and RAD25 subsequently were demonstrated by two-hybrid analysis. MSH2 coimmunoprecipitated specifically with epitope-tagged versions of RAD2, RAD10, RAD14, and RAD25. MSH2 and RAD10 were found to interact in msh3 msh6 and mlh1 pms1 double mutants, suggesting a direct interaction with MSH2. Mutations in MSH2 increased the UV sensitivity of NER-deficient yeast strains, and msh2 mutations were epistatic to the mutator phenotype observed in NER-deficient strains. These data suggest that MSH2 and possibly other components of DNA mismatch repair exist in a complex with NER proteins, providing a biochemical and genetical basis for these proteins to function in common processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two-component systems, sensor kinase-response regulator pairs, dominate bacterial signal transduction. Regulation is exerted by phosphorylation of an Asp in receiver domains of response regulators. Lability of the acyl phosphate linkage has limited structure determination for the active, phosphorylated forms of receiver domains. As assessed by both functional and structural criteria, beryllofluoride yields an excellent analogue of aspartyl phosphate in response regulator NtrC, a bacterial enhancer-binding protein. Beryllofluoride also appears to activate the chemotaxis, sporulation, osmosensing, and nitrate/nitrite response regulators CheY, Spo0F, OmpR, and NarL, respectively. NMR spectroscopic studies indicate that beryllofluoride will facilitate both biochemical and structural characterization of the active forms of receiver domains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transcriptional activation domains share little sequence homology and generally lack folded structures in the absence of their targets, aspects that have rendered activation domains difficult to characterize. Here, a combination of biochemical and nuclear magnetic resonance experiments demonstrates that the activation domain of the tumor suppressor p53 has an FXXΦΦ motif (F, Phe; X, any amino acids; Φ, hydrophobic residues) that folds into an α-helix upon binding to one of its targets, hTAFII31 (a human TFIID TATA box-binding protein-associated factor). MDM2, the cellular attenuator of p53, discriminates the FXXΦΦ motif of p53 from those of NF-κB p65 and VP16 and specifically inhibits p53 activity. Our studies support the notion that the FXXΦΦ sequence is a general α-helical recognition motif for hTAFII31 and provide insights into the mechanistic basis for regulation of p53 function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is the most common autosomal recessive disorder known in humans. A candidate gene for HH called HFE has recently been cloned that encodes a novel member of the major histocompatibility complex class I family. Most HH patients are homozygous for a Cys-282→Tyr (C282Y) mutation in HFE gene, which has been shown to disrupt interaction with β2-microglobulin; a second mutation, His-63→Asp (H63D), is enriched in HH patients who are heterozygous for C282Y mutation. The aims of this study were to determine the effects of the C282Y and H63D mutations on the cellular trafficking and degradation of the HFE protein in transfected COS-7 cells. The results indicate that, while the wild-type and H63D HFE proteins associate with β2-microglobulin and are expressed on the cell surface of COS-7 cells, these capabilities are lost by the C282Y HFE protein. We present biochemical and immunofluorescence data that indicate that the C282Y mutant protein: (i) is retained in the endoplasmic reticulum and middle Golgi compartment, (ii) fails to undergo late Golgi processing, and (iii) is subject to accelerated degradation. The block in intracellular transport, accelerated turnover, and failure of the C282Y protein to be presented normally on the cell surface provide a possible basis for impaired function of this mutant protein in HH.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

N-methyl-d-aspartate receptor (NMDAR) activation has been implicated in forms of synaptic plasticity involving long-term changes in neuronal structure, function, or protein expression. Transcriptional alterations have been correlated with NMDAR-mediated synaptic plasticity, but the problem of rapidly targeting new proteins to particular synapses is unsolved. One potential solution is synapse-specific protein translation, which is suggested by dendritic localization of numerous transcripts and subsynaptic polyribosomes. We report here a mechanism by which NMDAR activation at synapses may control this protein synthetic machinery. In intact tadpole tecta, NMDAR activation leads to phosphorylation of a subset of proteins, one of which we now identify as the eukaryotic translation elongation factor 2 (eEF2). Phosphorylation of eEF2 halts protein synthesis and may prepare cells to translate a new set of mRNAs. We show that NMDAR activation-induced eEF2 phosphorylation is widespread in tadpole tecta. In contrast, in adult tecta, where synaptic plasticity is reduced, this phosphorylation is restricted to short dendritic regions that process binocular information. Biochemical and anatomical evidence shows that this NMDAR activation-induced eEF2 phosphorylation is localized to subsynaptic sites. Moreover, eEF2 phosphorylation is induced by visual stimulation, and NMDAR blockade before stimulation eliminates this effect. Thus, NMDAR activation, which is known to mediate synaptic changes in the developing frog, could produce local postsynaptic alterations in protein synthesis by inducing eEF2 phosphorylation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Myosin Is, which constitute a ubiquitous monomeric subclass of myosins with actin-based motor properties, are associated with plasma membrane and intracellular vesicles. Myosin Is have been proposed as key players for membrane trafficking in endocytosis or exocytosis. In the present paper we provide biochemical and immunoelectron microscopic evidence indicating that a pool of myosin I alpha (MMIα) is associated with endosomes and lysosomes. We show that the overproduction of MMIα or the production of nonfunctional truncated MMIα affects the distribution of the endocytic compartments. We also show that truncated brush border myosin I proteins, myosin Is that share 78% homology with MMIα, promote the dissociation of MMIα from vesicular membranes derived from endocytic compartments. The analysis at the ultrastructural level of cells producing these brush border myosin I truncated proteins shows that the delivery of the fluid phase markers from endosomes to lysosomes is impaired. MMIα might therefore be involved in membrane trafficking occurring between endosomes and lysosomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the cloning and characterization of Pichia pastoris PEX19 by complementation of a peroxisome-deficient mutant strain. Import of peroxisomal targeting signal 1- and 2-containing peroxisomal matrix proteins is defective in pex19 mutants. PEX19 encodes a hydrophilic 299-amino acid protein with sequence similarity to Saccharomyces cerevisiae Pex19p and human and Chinese hamster PxF, all farnesylated proteins, as well as hypothetical proteins from Caenorhabditis elegans and Schizosaccharomyces pombe. The farnesylation consensus is conserved in PpPex19p but dispensable for function and appears unmodified under the conditions tested. Pex19p localizes predominantly to the cytosolic fraction. Biochemical and two-hybrid analyses confirmed that Pex19p interacts with Pex3p, as seen in S. cerevisiae, but unexpectedly also with Pex10p. Two-hybrid analysis demonstrated that the amino-terminal 42 amino acids of Pex19p interact with the carboxyl-terminal 335 amino acids of Pex3p. In addition, the extreme carboxyl terminus of Pex19p (67 amino acids) is required for interaction with the amino-terminal 380 amino acids of Pex10p. Biochemical and immunofluorescence microscopy analyses of pex19Δ cells identified the membrane protein Pex3p in peroxisome remnants that were not previously observed in S. cerevisiae. These small vesicular and tubular (early) remnants are morphologically distinct from other Pppex mutant (late) remnants, suggesting that Pex19p functions at an early stage of peroxisome biogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Drosophila Enabled (Ena) was initially identified as a dominant genetic suppressor of mutations in the Abelson tyrosine kinase and, more recently, as a member of the Ena/human vasodilator-stimulated phosphoprotein (VASP) family of proteins. We have used genetic, biochemical, and cell biological approaches to demonstrate the functional relationship between Ena and human VASP. In addition, we have defined the roles of Ena domains identified as essential for its activity in vivo. We have demonstrated that VASP rescues the embryonic lethality associated with loss of Ena function in Drosophila and have shown that Ena, like VASP, is associated with actin filaments and focal adhesions when expressed in cultured cells. To define sequences that are central to Ena function, we have characterized the molecular lesions present in two lethal ena mutant alleles that affected the Ena/VASP homology domain 1 (EVH1) and EVH2. A missense mutation that resulted in an amino acid substitution in the EVH1 domain eliminated in vitro binding of Ena to the cytoskeletal protein zyxin, a previously reported binding partner of VASP. A nonsense mutation that resulted in a C-terminally truncated Ena protein lacking the EVH2 domain failed to form multimeric complexes and exhibited reduced binding to zyxin and the Abelson Src homology 3 domain. Our analysis demonstrates that Ena and VASP are functionally homologous and defines the conserved EVH1 and EVH2 domains as central to the physiological activity of Ena.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The widely used immunosuppressant cyclosporine A (CSA) blocks nuclear translocation of the transcription factor, NF-AT (nuclear factor of activated T cells), preventing its activity. mRNA for several NF-AT isoforms has been shown to exist in cells outside of the immune system, suggesting a possible mechanism for side effects associated with CSA treatment. In this study, we demonstrate that CSA inhibits biochemical and morphological differentiation of skeletal muscle cells while having a minimal effect on proliferation. Furthermore, in vivo treatment with CSA inhibits muscle regeneration after induced trauma in mice. These results suggest a role for NF-AT–mediated transcription outside of the immune system. In subsequent experiments, we examined the activation and cellular localization of NF-AT in skeletal muscle cells in vitro. Known pharmacological inducers of NF-AT in lymphoid cells also stimulate transcription from an NF-AT–responsive reporter gene in muscle cells. Three isoforms of NF-AT (NF-ATp, c, and 4/x/c3) are present in the cytoplasm of muscle cells at all stages of myogenesis tested. However, each isoform undergoes calcium-induced nuclear translocation from the cytoplasm at specific stages of muscle differentiation, suggesting specificity among NF-AT isoforms in gene regulation. Strikingly, one isoform (NF-ATc) can preferentially translocate to a subset of nuclei within a single multinucleated myotube. These results demonstrate that skeletal muscle cells express functionally active NF-AT proteins and that the nuclear translocation of individual NF-AT isoforms, which is essential for the ability to coordinate gene expression, is influenced markedly by the differentiation state of the muscle cell.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The leukocyte integrin, lymphocyte function-associated antigen 1 (LFA-1) (CD11a/CD18), mediates cell adhesion and signaling in inflammatory and immune responses. To support these functions, LFA-1 must convert from a resting to an activated state that avidly binds its ligands such as intercellular adhesion molecule 1 (ICAM-1). Biochemical and x-ray studies of the Mac-1 (CD11b/CD18) I domain suggest that integrin activation could involve a conformational change of the C-terminal α-helix. We report the use of NMR spectroscopy to identify CD11a I domain residues whose resonances are affected by binding to ICAM-1. We observed two distinct sites in the CD11a I domain that were affected. As expected from previous mutagenesis studies, a cluster of residues localized around the metal ion-dependent adhesion site (MIDAS) was severely perturbed on ICAM-1 binding. A second cluster of residues distal to the MIDAS that included the C-terminal α-helix of the CD11a I domain was also affected. Substitution of residues in the core of this second I domain site resulted in constitutively active LFA-1 binding to ICAM-1. Binding data indicates that none of the 20 substitution mutants we tested at this second site form an essential ICAM-1 binding interface. We also demonstrate that residues in the I domain linker sequences can regulate LFA-1 binding. These results indicate that LFA-1 binding to ICAM-1 is regulated by an I domain allosteric site (IDAS) and that this site is structurally linked to the MIDAS.