3 resultados para Binocular Vision

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Praying mantids use binocular cues to judge whether their prey is in striking distance. When there are several moving targets within their binocular visual field, mantids need to solve the correspondence problem. They must select between the possible pairings of retinal images in the two eyes so that they can strike at a single real target. In this study, mantids were presented with two targets in various configurations, and the resulting fixating saccades that precede the strike were analyzed. The distributions of saccades show that mantids consistently prefer one out of several possible matches. Selection is in part guided by the position and the spatiotemporal features of the target image in each eye. Selection also depends upon the binocular disparity of the images, suggesting that insects can perform local binocular computations. The pairing rules ensure that mantids tend to aim at real targets and not at “ghost” targets arising from false matches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Binocular disparity, the differential angular separation between pairs of image points in the two eyes, is the well-recognized basis for binocular distance perception. Without denying disparity's role in perceiving depth, we describe two perceptual phenomena, which indicate that a wider view of binocular vision is warranted. First, we show that disparity can play a critical role in two-dimensional perception by determining whether separate image fragments should be grouped as part of a single surface or segregated as parts of separate surfaces. Second, we show that stereoscopic vision is not limited to the registration and interpretation of binocular disparity but that it relies on half-occluded points, visible to one eye and not the other, to determine the layout and transparency of surfaces. Because these half-visible points are coded by neurons carrying eye-of-origin information, we suggest that the perception of these surface properties depends on neural activity available at visual cortical area V1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of neurons in the primary visual cortex of primates can be activated by stimulation of either eye; moreover, the monocular receptive fields of such neurons are located in about the same region of visual space. These well-known facts imply that binocular convergence in visual cortex can explain our cyclopean view of the world. To test the adequacy of this assumption, we examined how human subjects integrate binocular events in time. Light flashes presented synchronously to both eyes were compared to flashes presented alternately (asynchronously) to one eye and then the other. Subjects perceived very-low-frequency (2 Hz) asynchronous trains as equivalent to synchronous trains flashed at twice the frequency (the prediction based on binocular convergence). However, at higher frequencies of presentation (4-32 Hz), subjects perceived asynchronous and synchronous trains to be increasingly similar. Indeed, at the flicker-fusion frequency (approximately 50 Hz), the apparent difference between the two conditions was only 2%. We suggest that the explanation of these anomalous findings is that we parse visual input into sequential episodes.