7 resultados para Bills of exchange.

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellulose-binding domains (CBDs) bind specifically to cellulose, and form distinct domains of most cellulose degrading enzymes. The CBD-mediated binding of the enzyme has a fundamental role in the hydrolysis of the solid cellulose substrate. In this work we have investigated the reversibility and kinetics of the binding of the CBD from Trichoderma reesei cellobiohydrolase I on microcrystalline cellulose. The CBD was produced in Escherichia coli, purified, and radioactively labeled by reductive alkylation with 3H. Sensitive detection of the labeled CBD allowed more detailed analysis of its behavior than has been possible before, and important novel features were resolved. Binding of the CBD was found to be temperature sensitive, with an increased affinity at lower temperatures. The interaction of the CBD with cellulose was shown to be fully reversible and the CBD could be eluted from cellulose by simple dilution. The rate of exchange measured for the CBD-cellulose interaction compares well with the hydrolysis rate of cellobiohydrolase I, which is consistent with its proposed mode of action as a processive exoglucanase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hydrogen–deuterium exchange experiments have been used previously to investigate the structures of well defined states of a given protein. These include the native state, the unfolded state, and any intermediates that can be stably populated at equilibrium. More recently, the hydrogen–deuterium exchange technique has been applied in kinetic labeling experiments to probe the structures of transiently formed intermediates on the kinetic folding pathway of a given protein. From these equilibrium and nonequilibrium studies, protection factors are usually obtained. These protection factors are defined as the ratio of the rate of exchange of a given backbone amide when it is in a fully solvent-exposed state (usually obtained from model peptides) to the rate of exchange of that amide in some state of the protein or in some intermediate on the folding pathway of the protein. This definition is straightforward for the case of equilibrium studies; however, it is less clear-cut for the case of transient kinetic intermediates. To clarify the concept for the case of burst-phase intermediates, we have introduced and mathematically defined two different types of protection factors: one is Pstruc, which is more related to the structure of the intermediate, and the other is Papp, which is more related to the stability of the intermediate. Kinetic hydrogen–deuterium exchange data from disulfide-intact ribonuclease A and from cytochrome c are discussed to explain the use and implications of these two definitions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Allosteric effects in hemoglobin arise from the equilibrium between at least two energetic states of the molecule: a tense state, T, and a relaxed state, R. The two states differ from each other in the number and energy of the interactions between hemoglobin subunits. In the T state, constraints between subunits oppose the structural changes resulting from ligand binding. In the R state, these constraints are released, thus enhancing ligand-binding affinity. In the present work, we report the presence of four sites in hemoglobin that are structurally stabilized in the R relative to the T state. These sites are Hisα103(G10) and Hisα122(H5) in each α subunit of hemoglobin. They are located at the α1β1 and α2β2 interfaces of the hemoglobin tetramer, where the histidine side chains form hydrogen bonds with specific residues from the β chains. We have measured the solvent exchange rates of side chain protons of Hisα103(G10) and Hisα122(H5) in both deoxygenated and ligated hemoglobin by NMR spectroscopy. The exchange rates were found to be higher in the deoxygenated-T than in ligated-R state. Analysis of exchange rates in terms of the local unfolding model revealed that the structural stabilization free energy at each of these two histidines is larger by ≈1.5 kcal/(mol tetramer) in the R relative to the T state. The location of these histidines at the intradimeric α1β1 and α2β2 interfaces also suggests a role for these interfaces in the allosteric equilibrium of hemoglobin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Activation of the ubiquitously expressed Na-H exchanger, NHE1, results in an increased efflux of intracellular H+. The increase in intracellular pH associated with this H+ efflux may contribute to regulating cell proliferation, differentiation, and neoplastic transformation. Although NHE1 activity is stimulated by growth factors and hormones acting through multiple GTPase-mediated pathways, little is known about how the exchanger is directly regulated. Using expression library screening, we identified a novel protein that specifically binds to NHE1 at a site that is critical for growth factor stimulation of exchange activity. This protein is homologous to calcineurin B and calmodulin and is designated CHP for calcineurin B homologous protein. Like NHE1, CHP is widely expressed in human tissues. Transient overexpression of CHP inhibits serum- and GTP-ase-stimulated NHE1 activity. CHP is a phosphoprotein and expression of constitutively activated GTPases decreases CHP phosphorylation. The phosphorylation state of CHP may therefore be an important signal controlling mitogenic regulation of NHE1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nonclassical major histocompatibility complex class II molecule HLA-DM (DM) has recently been shown to play a central role in the class II-associated antigen presentation pathway: DM releases invariant chain-derived CLIP peptides (class II-associated invariant chain protein peptide) from HLA-DR (DR) molecules and thereby facilitates loading with antigenic peptides. Some observations have led to the suggestion that DM acts in a catalytic manner, but so far direct proof is missing. Here, we investigated in vitro the kinetics of exchange of endogenously bound CLIP for various peptides on DR1 and DR2a molecules: we found that in the presence of DM the peptide loading process follows Michaelis-Menten kinetics with turnover numbers of 3-12 DR molecules per minute per DM molecule, and with KM values of 500-1000 nM. In addition, surface plasmon resonance measurements showed that DM interacts efficiently with DR-CLIP complexes but only weakly with DR-peptide complexes isolated from DM-positive cells. Taken together, our data provide evidence that DM functions as an enzyme-like catalyst of peptide exchange and favors the generation of long-lived DR-peptide complexes that are no longer substrates for DM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An assay that allows measurement of absolute induction frequencies for DNA double-strand breaks (dsbs) in defined regions of the genome and that quantitates rejoining of correct DNA ends has been used to study repair of dsbs in normal human fibroblasts after x-irradiation. The approach involves hybridization of single-copy DNA probes to Not I restriction fragments separated according to size by pulsed-field gel electrophoresis. Induction of dsbs is quantitated from the decrease in the intensity of the hybridizing restriction fragment and an accumulation of a smear below the band. Rejoining of dsbs results in reconstitution of the intact restriction fragment only if correct DNA ends are joined. By comparing results from this technique with results from a conventional electrophoresis assay that detects all rejoining events, it is possible to quantitate the misrejoining frequency. Three Not I fragments on the long arm of chromosome 21 were investigated with regard to dsb induction, yielding an identical induction rate of 5.8 X 10(-3) break per megabase pair per Gy. Correct dsb rejoining was measured for two of these Not I fragments after initial doses of 80 and 160 Gy. The misrejoining frequency was about 25% for both fragments and was independent of dose. This result appears to be representative for the whole genome as shown by analysis of the entire Not I fragment distribution. The correct rejoining events primarily occurred within the first 2 h, while the misrejoining kinetics included a much slower component, with about half of the events occurring between 2 and 24 h. These misrejoining kinetics are similar to those previously reported for production of exchange aberrations in interphase chromosomes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dynamic combinatorial libraries are mixtures of compounds that exist in a dynamic equilibrium and can be driven to compositional self adaptation via selective binding of a specific assembly of certain components to a molecular target. We present here an extension of this initial concept to dynamic libraries that consists of two levels, the first formed by the coordination of terpyridine-based ligands to the transition metal template, and the second, by the imine formation with the aldehyde substituents on the terpyridine moieties. Dialdehyde 7 has been synthesized, converted into a variety of ligands, oxime ethers L11–L33 and acyl hydrazones L44–L77, and subsequently into corresponding cobalt complexes. A typical complex, Co(L22)22+ is shown to engage in rapid exchange with a competing ligand L11 and with another complex, Co(L22)22+ in 30% acetonitrile/water at pH 7.0 and 25°C. The exchange in the corresponding Co(III) complexes is shown to be much slower. Imine exchange in the acyl hydrazone complexes (L44–L77) is strongly controlled by pH and temperature. The two types of exchange, ligand and imine, can thus be used as independent equilibrium processes controlled by different types of external intervention, i.e., via oxidation/reduction of the metal template and/or change in the pH/temperature of the medium. The resulting double-level dynamic libraries are therefore named orthogonal, in similarity with the orthogonal protecting groups in organic synthesis. Sample libraries of this type have been synthesized and showed the complete expected set of components in electrospray ionization MS.