2 resultados para Basalt.

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subseafloor at the mid-ocean ridge is predicted to be an excellent microbial habitat, because there is abundant space, fluid flow, and geochemical energy in the porous, hydrothermally influenced oceanic crust. These characteristics also make it a good analog for potential subsurface extraterrestrial habitats. Subseafloor environments created by the mixing of hot hydrothermal fluids and seawater are predicted to be particularly energy-rich, and hyperthermophilic microorganisms that broadly reflect such predictions are ejected from these systems in low-temperature (≈15°C), basalt-hosted diffuse effluents. Seven hyperthermophilic heterotrophs isolated from low-temperature diffuse fluids exiting the basaltic crust in and near two hydrothermal vent fields on the Endeavour Segment, Juan de Fuca Ridge, were compared phylogenetically and physiologically to six similarly enriched hyperthermophiles from samples associated with seafloor metal sulfide structures. The 13 organisms fell into four distinct groups: one group of two organisms corresponding to the genus Pyrococcus and three groups corresponding to the genus Thermococcus. Of these three groups, one was composed solely of sulfide-derived organisms, and the other two related groups were composed of subseafloor organisms. There was no evidence of restricted exchange of organisms between sulfide and subseafloor habitats, and therefore this phylogenetic distinction indicates a selective force operating between the two habitats. Hypotheses regarding the habitat differences were generated through comparison of the physiology of the two groups of hyperthermophiles; some potential differences between these habitats include fluid flow stability, metal ion concentrations, and sources of complex organic matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tracing interisland and interarchipelago movements of people and artifacts in prehistoric Polynesia has posed a challenge to archaeologists due to the lack of pottery and obsidian, two materials most readily used in studies of prehistoric trade or exchange. Here we report the application of nondestructive energy-dispersive x-ray fluorescence (EDXRF) analysis to the sourcing of Polynesian artifacts made from basalt, one of the most ubiquitous materials in Polynesian archaeological sites. We have compared excavated and surface-collected basalt adzes and adze flakes from two sites in Samoa (site AS-13-1) and the Cook Islands (site MAN-44), with source basalts from known prehistoric quarries in these archipelagoes. In both cases, we are able to demonstrate the importing of basalt adzes from Tutuila Island, a distance of 100 km to Ofu Island, and of 1600 km to Mangaia Island. These findings are of considerable significance for Polynesian prehistory, as they demonstrate the movement of objects not only between islands in the same group (where communities were culturally and linguistically related) but also between distant island groups. Further applications of EDXRF analysis should greatly aid archaeologists in their efforts to reconstruct ancient trade and exchange networks, not only in Polynesia but also in other regions where basalt was a major material for artifact production.