29 resultados para BROWNIAN-MOTION

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have micromachined a silicon-chip device that transports DNA with a Brownian ratchet that rectifies the Brownian motion of microscopic particles. Transport properties for a DNA 50-mer agree with theoretical predictions, and the DNA diffusion constant agrees with previous experiments. This type of micromachine could provide a generic pump or separation component for DNA or other charged species as part of a microscale lab-on-a-chip. A device with reduced feature size could produce a size-based separation of DNA molecules, with applications including the detection of single-nucleotide polymorphisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Formulas are derived for the effect of size on a free-swimming microbe’s ability to follow chemical, light, or temperature stimuli or to disperse in random directions. The four main assumptions are as follows: (i) the organisms can be modeled as spheres, (ii) the power available to the organism for swimming is proportional to its volume, (iii) the noise in measuring a signal limits determination of the direction of a stimulus, and (iv) the time available to determine stimulus direction or to swim a straight path is limited by rotational diffusion caused by Brownian motion. In all cases, it is found that there is a sharp size limit below which locomotion has no apparent benefit. This size limit is estimated to most probably be about 0.6 μm diameter and is relatively insensitive to assumed values of the other parameters. A review of existing descriptions of free-floating bacteria reveals that the smallest of 97 motile genera has a mean length of 0.8 μm, whereas 18 of 94 nonmotile genera are smaller. Similar calculations have led to the conclusion that a minimum size also exists for use of pheromones in mate location, although this size limit is about three orders of magnitude larger. In both cases, the application of well-established physical laws and biological generalities has demonstrated that a common feature of animal behavior is of no use to small free-swimming organisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Knowledge of the elastic properties of actin filaments is crucial for considering its role in muscle contraction, cellular motile events, and formation of cell shape. The stiffness of actin filaments in the directions of stretching and bending has been determined. In this study, we have directly determined the torsional rigidity and breaking force of single actin filaments by measuring the rotational Brownian motion and tensile strength using optical tweezers and microneedles, respectively. Rotational angular fluctuations of filaments supplied the torsional rigidity as (8.0 ± 1.2) × 10−26 Nm2. This value is similar to that deduced from the longitudinal rigidity, assuming the actin filament to be a homogeneous rod. The breaking force of the actin–actin bond was measured while twisting a filament through various angles using microneedles. The breaking force decreased greatly under twist, e.g., from 600–320 pN when filaments were turned through 90°, independent of the rotational direction. Our results indicate that an actin filament exhibits comparable flexibility in the rotational and longitudinal directions, but breaks more easily under torsional load.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A separation technique employing a microfabricated sieve has been demonstrated by observing the motion of DNA molecules of different size. The sieve consists of a two-dimensional lattice of obstacles whose asymmetric disposition rectifies the Brownian motion of molecules driven through the device, causing them to follow paths that depend on their diffusion coefficient. A nominal 6% resolution by length of DNA molecules in the size range 15–30 kbp may be achieved in a 4-inch (10-cm) silicon wafer. The advantage of this method is that samples can be loaded and sorted continuously, in contrast to the batch mode commonly used in gel electrophoresis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Development of protrusions in the cell is indispensable in the process of cell motility. Membrane protrusion has long been suggested to occur as a result of actin polymerization immediately beneath the cell membrane at the leading edge, but elucidation of the mechanism is insufficient because of the complexity of the cell. To study the mechanism, we prepared giant liposomes containing monomeric actin (100 or 200 μM) and introduced KCl into individual liposomes by an electroporation technique. On the electroporation, the giant liposomes deformed. Most importantly, protrusive structure grew from the liposomes containing 200 μM actin at rates (ranging from 0.3 to 0.7 μm/s) similar to those obtained in the cell. The deformation occurred in a time range (30 ∼ 100 s) similar to that of actin polymerization monitored in a cuvette (ca. 50 s). Concomitant with deformation, Brownian motion of micron-sized particles entrapped in the liposomes almost ceased. From these observations, we conclude that actin polymerization in the liposomes caused the protrusive formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type IV pili are thin filaments that extend from the poles of a diverse group of bacteria, enabling them to move at speeds of a few tenths of a micrometer per second. They are required for twitching motility, e.g., in Pseudomonas aeruginosa and Neisseria gonorrhoeae, and for social gliding motility in Myxococcus xanthus. Here we report direct observation of extension and retraction of type IV pili in P. aeruginosa. Cells without flagellar filaments were labeled with an amino-specific Cy3 fluorescent dye and were visualized on a quartz slide by total internal reflection microscopy. When pili were attached to a cell and their distal ends were free, they extended or retracted at rates of about 0.5 μm s−1 (29°C). They also flexed by Brownian motion, exhibiting a persistence length of about 5 μm. Frequently, the distal tip of a filament adsorbed to the substratum and the filament was pulled taut. From the absence of lateral deflections of such filaments, we estimate tensions of at least 10 pN. Occasionally, cell bodies came free and were pulled forward by pilus retraction. Thus, type IV pili are linear actuators that extend, attach at their distal tips, exert substantial force, and retract.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phenomena that can be observed for a large number of molecules may not be understood if it is not possible to observe the events on the single-molecule level. We measured the fluorescence lifetimes of individual tetramethylrhodamine molecules, linked to an 18-mer deoxyribonucleotide sequence specific for M13 DNA, by time-resolved, single-photon counting in a confocal fluorescence microscope during Brownian motion in solution. When many molecules were observed, a biexponential fluorescence decay was observed with equal amplitudes. However, on the single-molecule level, the fraction of one of the amplitudes spanned from 0 to unity for a collection of single-molecule detections. Further analysis by fluorescence correlation spectroscopy made on many molecules revealed a process that obeys a stretched exponential relaxation law. These facts, combined with previous evidence of the quenching effect of guanosine on rhodamines, indicate that the tetramethylrhodamine molecule senses conformational transitions as it associates and dissociates to a guanosine-rich area. Thus, our results reveal conformational transitions in a single molecule in solution under conditions that are relevant for biological processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The perceived speed of motion in one part of the visual field is influenced by the speed of motion in its surrounding fields. Little is known about the cellular mechanisms causing this phenomenon. Recordings from mammalian visual cortex revealed that speed preference of the cortical cells could be changed by displaying a contrast speed in the field surrounding the cell’s classical receptive field. The neuron’s selectivity shifted to prefer faster speed if the contextual surround motion was set at a relatively lower speed, and vice versa. These specific center–surround interactions may underlie the perceptual enhancement of speed contrast between adjacent fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein folding occurs on a time scale ranging from milliseconds to minutes for a majority of proteins. Computer simulation of protein folding, from a random configuration to the native structure, is nontrivial owing to the large disparity between the simulation and folding time scales. As an effort to overcome this limitation, simple models with idealized protein subdomains, e.g., the diffusion–collision model of Karplus and Weaver, have gained some popularity. We present here new results for the folding of a four-helix bundle within the framework of the diffusion–collision model. Even with such simplifying assumptions, a direct application of standard Brownian dynamics methods would consume 10,000 processor-years on current supercomputers. We circumvent this difficulty by invoking a special Brownian dynamics simulation. The method features the calculation of the mean passage time of an event from the flux overpopulation method and the sampling of events that lead to productive collisions even if their probability is extremely small (because of large free-energy barriers that separate them from the higher probability events). Using these developments, we demonstrate that a coarse-grained model of the four-helix bundle can be simulated in several days on current supercomputers. Furthermore, such simulations yield folding times that are in the range of time scales observed in experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new and sensitive molecular probe, 2-(2′-hydroxyphenyl)imidazo[1,2-a]pyridine (HPIP), for monitoring structural changes in lipid bilayers is presented. Migration of HPIP from water into vesicles involves rupture of hydrogen (H) bonds with water and formation of an internal H bond once the probe is inside the vesicle. These structural changes of the dye allow the occurrence of a photoinduced intramolecular proton-transfer reaction and a subsequent twisting/rotational process upon electronic excitation of the probe. The resulting large Stokes-shifted fluorescence band depends on the twisting motion of the zwitterionic phototautomer and is characterized in vesicles of dimyristoyl-phosphatidylcholine and in dipalmitoyl-phosphatidylcholine at the temperature range of interest and in the presence of cholesterol. Because the fluorescence of aqueous HPIP does not interfere in the emission of the probe within the vesicles, HPIP proton-transfer/twisting motion fluorescence directly allows us to monitor and quantify structural changes within bilayers. The static and dynamic fluorescence parameters are sensitive enough to such changes to suggest this photostable dye as a potential molecular probe of the physical properties of lipid bilayers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate performance-related changes in cortical and cerebellar activity. The largest learning-dependent changes were observed in the anterior lateral cerebellum, where the extent and intensity of activation correlated inversely with psychophysical performance. After learning had occurred (a few minutes), the cerebellar activation almost disappeared; however, it was restored when the subjects were presented with a novel, untrained direction of motion for which psychophysical performance also reverted to chance level. Similar reductions in the extent and intensity of brain activations in relation to learning occurred in the superior colliculus, anterior cingulate, and parts of the extrastriate cortex. The motion direction-sensitive middle temporal visual complex was a notable exception, where there was an expansion of the cortical territory activated by the trained stimulus. Together, these results indicate that the learning and representation of visual motion discrimination are mediated by different, but probably interacting, neuronal subsystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The EPR spectra of spin-labeled lipid chains in fully hydrated bilayer membranes of dimyristoyl phosphatidylcholine containing 40 mol % of cholesterol have been studied in the liquid-ordered phase at a microwave radiation frequency of 94 GHz. At such high field strengths, the spectra should be optimally sensitive to lateral chain ordering that is expected in the formation of in-plane domains. The high-field EPR spectra from random dispersions of the cholesterol-containing membranes display very little axial averaging of the nitroxide g-tensor anisotropy for lipids spin labeled toward the carboxyl end of the sn-2 chain (down to the 8-C atom). For these positions of labeling, anisotropic 14N-hyperfine splittings are resolved in the gzz and gyy regions of the nonaxial EPR spectra. For positions of labeling further down the lipid chain, toward the terminal methyl group, the axial averaging of the spectral features systematically increases and is complete at the 14-C atom position. Concomitantly, the time-averaged 〈Azz〉 element of the 14N-hyperfine tensor decreases, indicating that the axial rotation at the terminal methyl end of the chains arises from correlated torsional motions about the bonds of the chain backbone, the dynamics of which also give rise to a differential line broadening of the 14N-hyperfine manifolds in the gzz region of the spectrum. These results provide an indication of the way in which lateral ordering of lipid chains in membranes is induced by cholesterol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When human subjects discriminate motion directions of two visual stimuli, their discrimination improves with practice. This improved performance has been found to be specific to the practiced directions and does not transfer to new motion directions. Indeed, such stimulus-specific learning has become a trademark finding in almost all perceptual learning studies and has been used to infer the loci of learning in the brain. For example, learning in motion discrimination has been inferred to occur in the visual area MT (medial temporal cortex) of primates, where neurons are selectively tuned to motion directions. However, such motion discrimination task is extremely difficult, as is typical of most perceptual learning tasks. When the difficulty is moderately reduced, learning transfers to new motion directions. This result challenges the idea of using simple visual stimuli to infer the locus of learning in low-level visual processes and suggests that higher-level processing is essential even in “simple” perceptual learning tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In motion standstill, a quickly moving object appears to stand still, and its details are clearly visible. It is proposed that motion standstill can occur when the spatiotemporal resolution of the shape and color systems exceeds that of the motion systems. For moving red-green gratings, the first- and second-order motion systems fail when the grating is isoluminant. The third-order motion system fails when the green/red saturation ratio produces isosalience (equal distinctiveness of red and green). When a variety of high-contrast red-green gratings, with different spatial frequencies and speeds, were made isoluminant and isosalient, the perception of motion standstill was so complete that motion direction judgments were at chance levels. Speed ratings also indicated that, within a narrow range of luminance contrasts and green/red saturation ratios, moving stimuli were perceived as absolutely motionless. The results provide further evidence that isoluminant color motion is perceived only by the third-order motion system, and they have profound implications for the nature of shape and color perception.