6 resultados para BONE STRUCTURE
em National Center for Biotechnology Information - NCBI
Resumo:
Msx1 is a key factor for the development of tooth and craniofacial skeleton and has been proposed to play a pivotal role in terminal cell differentiation. In this paper, we demonstrated the presence of an endogenous Msx1 antisense RNA (Msx1-AS RNA) in mice, rats, and humans. In situ analysis revealed that this RNA is expressed only in differentiated dental and bone cells with an inverse correlation with Msx1 protein. These in vivo data and overexpression of Msx1 sense and AS RNA in an odontoblastic cell line (MO6-G3) showed that the balance between the levels of the two Msx1 RNAs is related to the expression of Msx1 protein. To analyze the impact of this balance in the Msx-Dlx homeoprotein pathway, we analyzed the effect of Msx1, Msx2, and Dlx5 overexpression on proteins involved in skeletal differentiation. We showed that the Msx1-AS RNA is involved in crosstalk between the Msx-Dlx pathways because its expression was abolished by Dlx5. Msx1 was shown to down-regulate a master gene of skeletal cells differentiation, Cbfa1. All these data strongly suggest that the ratio between Msx1 sense and antisense RNAs is a very important factor in the control of skeletal terminal differentiation. Finally, the initiation site for Msx1-AS RNA transcription was located by primer extension in both mouse and human in an identical region, including a consensus TATA box, suggesting an evolutionary conservation of the AS RNA-mediated regulation of Msx1 gene expression.
Resumo:
Bone morphogenic protein-1 (BMP-1) was originally identified as one of several BMPs that induced new bone formation when implanted into ectopic sites in rodents. BMP-1, however, differed from other BMPs in that it its structure was not similar to transforming growth factor beta. Instead, it had a large domain homologous to a metalloendopeptidase isolated from crayfish, an epidermal growth-factor-like domain, and three regions of internal sequence homology referred to as CUB domains. Therefore, BMP-1 was a member of the "astacin families" of zinc-requiring endopeptidases. Many astacins have been shown to play critical roles in embryonic hatching, dorsal/ventral patterning, and early developmental decisions. Here, we have obtained amino acid sequences and isolated cDNA clones for procollagen C-proteinase (EC 3.4.24.19), an enzyme that is essential for the processing of procollagens to fibrillar collagens. The results demonstrate that procollagen C-proteinase is identical to BMP-1.
Resumo:
beta-2-Microglobulin (beta-2m) is a major constituent of amyloid fibrils in patients with dialysis-related amyloidosis (DRA). Recently, we found that the pigmented and fluorescent adducts formed nonenzymatically between sugar and protein, known as advanced glycation end products (AGEs), were present in beta-2m-containing amyloid fibrils, suggesting the possible involvement of AGE-modified beta-2m in bone and joint destruction in DRA. As an extension of our search for the native structure of AGEs in beta-2m of patients with DRA, the present study focused on pentosidine, a fluorescent cross-linked glycoxidation product. Determination by both HPLC assay and competitive ELISA demonstrated a significant amount of pentosidine in amyloid-fibril beta-2m from long-term hemodialysis patients with DRA, and the acidic isoform of beta-2m in the serum and urine of hemodialysis patients. A further immunohistochemical study revealed the positive immunostaining for pentosidine and immunoreactive AGEs and beta-2m in macrophage-infiltrated amyloid deposits of long-term hemodialysis patients with DRA. These findings implicate a potential link of glycoxidation products in long-lived beta-2m-containing amyloid fibrils to the pathogenesis of DRA.
Resumo:
We report the three-dimensional structure of osteogenic protein 1 (OP-1, also known as bone morphogenetic protein 7) to 2.8-A resolution. OP-1 is a member of the transforming growth factor beta (TGF-beta) superfamily of proteins and is able to induce new bone formation in vivo. Members of this superfamily share sequence similarity in their C-terminal regions and are implicated in embryonic development and adult tissue repair. Our crystal structure makes possible the structural comparison between two members of the TGF-beta superfamily. We find that although there is limited sequence identity between OP-1 and TGF-beta 2, they share a common polypeptide fold. These results establish a basis for proposing the OP-1/TGF-beta 2 fold as the primary structural motif for the TGF-beta superfamily as a whole. Detailed comparison of the OP-1 and TGF-beta 2 structures has revealed striking differences that provide insights into how these growth factors interact with their receptors.
Resumo:
An immunoglobulin light chain protein was isolated from the urine of an individual (BRE) with systemic amyloidosis. Complete amino acid sequence of the variable region of the light chain (VL) protein established it as a kappa I, which when compared with other kappa I amyloid associated proteins had unique residues, including Ile-34, Leu-40, and Tyr-71. To study the tertiary structure, BRE VL was expressed in Escherichia coli by using a PCR product amplified from the patient BRE's bone marrow DNA. The PCR product was ligated into pCZ11, a thermal-inducible replication vector. Recombinant BRE VL was isolated, purified to homogeneity, and crystallized by using ammonium sulfate as the precipitant. Two crystal forms were obtained. In crystal form I the BRE VL kappa domain crystallizes as a dimer with unit cell constants isomorphous to previously published kappa protein structures. Comparison with a nonamyloid VL kappa domain from patient REI, identified significant differences in position of residues in the hypervariable segments plus variations in framework region (FR) segments 40-46 (FR2) and 66-67 (FR3). In addition, positional differences can be seen along the two types of local diads, corresponding to the monomer-monomer and dimer-dimer interfaces. From the packing diagram, a model for the amyloid light chain (AL) fibril is proposed based on a pseudohexagonal spiral structure with a rise of approximately the width of two dimers per 360 degree turn. This spiral structure could be consistent with the dimensions of amyloid fibrils as determined by electron microscopy.
Resumo:
PR-39 is a porcine 39-aa peptide antibiotic composed of 49% proline and 24% arginine, with an activity against Gram-negative bacteria comparable to that of tetracycline. In Escherichia coli, it inhibits DNA and protein synthesis. PR-39 was originally isolated from pig small intestine, but subsequent cDNA cloning showed that the gene is expressed in the bone marrow. The open reading frame of the clone showed that PR-39 is made as 173-aa precursor whose proregion belongs to the cathelin family. The PR39 gene, which is rather compact and spans only 1784 bp has now been sequenced. The coding information is split into four exons. The first exon contains the signal sequence of 29 residues and the first 37 residues of the cathelin propart. Exons 2 and 3 contain only cathelin information, while exon 4 codes for the four C-terminal cathelin residues and the mature PR-39 peptide extended by three residues. The sequenced upstream region (1183 bp) contains four potential recognition sites for NF-IL6 and three for APRF, transcription factors known to regulate genes for both cytokines and acute phase response factors. Genomic hybridizations revealed a fairly high level of restriction fragment length polymorphism and indicated that there are at least two copies of the PR39 gene in the pig genome. PR39 was mapped to pig chromosome 13 by linkage and in situ hybridization mapping. The gene for the human peptide antibiotic FALL-39 (also a member of the cathelin family) was mapped to human chromosome 3, which is homologous to pig chromosome 13.