5 resultados para BN

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) and its receptors (EGFR) play important roles in tumorigenesis. In various experimental cancers, treatment with antagonists of bombesin/gastrin-releasing peptide (BN/GRP) produces a reduction in EGFRs, concomitant to inhibition of tumor growth. To investigate the mechanisms involved, we monitored concentrations of BN/GRP antagonist RC-3095 in serum of mice, rats, and hamsters given a single subcutaneous or intravenous injection of this analog. In parallel studies, we measured levels and mRNA expression of EGFRs in estrogen-dependent and independent MXT mouse mammary cancers, following a single subcutaneous administration of RC-3095 to tumor-bearing mice. Peak values of RC-3095 in serum were detected 2 min after intravenous or 15 min after subcutaneous injection. The levels of RC-3095 declined rapidly and became undetectable after 3–5 hr. In the estrogen-dependent MXT tumors, the concentration of EGF receptors was reduced by about 60% 6 hr following injection and returned to original level after 24 hr. Levels of mRNA for EGFR fell parallel with the receptor number and were nearly normal after 24 hr. In the hormone-independent MXT cancers, the number of EGFRs decreased progressively, becoming undetectable 6 hr after injection of RC-3095, and returned to normal values at 24 hr, but EGFR mRNA levels remained lower for 48 hr. Thus, in spite of rapid elimination from serum, BN/GRP antagonist RC-3095 can induce a prolonged decrease in levels and mRNA expression of EGFRs. These findings may explain how single daily injections of BN/GRP antagonists can maintain tumor growth inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore charge migration in DNA, advancing two distinct mechanisms of charge separation in a donor (d)–bridge ({Bj})–acceptor (a) system, where {Bj} = B1,B2, … , BN are the N-specific adjacent bases of B-DNA: (i) two-center unistep superexchange induced charge transfer, d*{Bj}a → d∓{Bj}a±, and (ii) multistep charge transport involves charge injection from d* (or d+) to {Bj}, charge hopping within {Bj}, and charge trapping by a. For off-resonance coupling, mechanism i prevails with the charge separation rate and yield exhibiting an exponential dependence ∝ exp(−βR) on the d-a distance (R). Resonance coupling results in mechanism ii with the charge separation lifetime τ ∝ Nη and yield Y ≃ (1 + δ̄ Nη)−1 exhibiting a weak (algebraic) N and distance dependence. The power parameter η is determined by charge hopping random walk. Energetic control of the charge migration mechanism is exerted by the energetics of the ion pair state d∓B1±B2 … BNa relative to the electronically excited donor doorway state d*B1B2 … BNa. The realization of charge separation via superexchange or hopping is determined by the base sequence within the bridge. Our energetic–dynamic relations, in conjunction with the energetic data for d*/d− and for B/B+, determine the realization of the two distinct mechanisms in different hole donor systems, establishing the conditions for “chemistry at a distance” after charge transport in DNA. The energetic control of the charge migration mechanisms attained by the sequence specificity of the bridge is universal for large molecular-scale systems, for proteins, and for DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic administration of estrogen to the Fischer 344 (F344) rat induces growth of large, hemorrhagic pituitary tumors. Ten weeks of diethylstilbestrol (DES) treatment caused female F344 rat pituitaries to grow to an average of 109.2 +/- 6.3 mg (mean +/- SE) versus 11.3 +/- 1.4 mg for untreated rats, and to become highly hemorrhagic. The same DES treatment produced no significant growth (8.9 +/- 0.5 mg for treated females versus 8.7 +/- 1.1 for untreated females) or morphological changes in Brown Norway (BN) rat pituitaries. An F1 hybrid of F344 and BN exhibited significant pituitary growth after 10 weeks of DES treatment with an average mass of 26.3 +/- 0.7 mg compared with 8.6 +/- 0.9 mg for untreated rats. Surprisingly, the F1 hybrid tumors were not hemorrhagic and had hemoglobin content and outward appearance identical to that of BN. Expression of both growth and morphological changes is due to multiple genes. However, while DES-induced pituitary growth exhibited quantitative, additive inheritance, the hemorrhagic phenotype exhibited recessive, epistatic inheritance. Only 5 of the 160 F2 pituitaries exhibited the hemorrhagic phenotype; 36 of the 160 F2 pituitaries were in the F344 range of mass, but 31 of these were not hemorrhagic, indicating that the hemorrhagic phenotype is not merely a consequence of extensive growth. The hemorrhagic F2 pituitaries were all among the most massive, indicating that some of the genes regulate both phenotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bombesin (BN) acts as an autocrine mitogen in various human cancers. Several pseudononapeptide BN-(6-14) analogs with a reduced peptide bond between positions 13 and 14 have been shown to suppress the mitogenic activity of BN or gastrin-releasing peptide (GRP) when assessed by radioreceptor or proliferation assays and may have significant clinical applications. The search for potent and safe BN antagonists requires the evaluation of a large series of analogs in radioreceptor and proliferation assays. In this paper, we report that the ability of BN analogs to inhibit BN-induced calcium transients in Swiss 3T3 cells shows a high correlation with their inhibitory potency as evaluated by classical proliferation tests. The assay of calcium transients allows a rapid characterization of new BN analogs (in terms of minutes rather than days) and can be adapted as a labor and cost-effective screening step in the selection of potentially relevant BN antagonists for further characterization in cell proliferation systems. We also observed that results from the assay of calcium transients in Swiss 3T3 cells can be correlated with the results of the proliferative response in HT-29 cells, a cell line that does not seem to use the same early transmembrane ionic signal system. This result suggests that the calcium pathway is not mandatory for triggering cell division by the BN receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine), which is thought to be a retrograde messenger in long-term potentiation (LTP), enhances glutamate release and LTP through an action on presynaptic nerve endings. The PAF antagonist BN 52021 blocks CA1 LTP in hippocampal slices, and, when infused into rat dorsal hippocampus pre- or posttraining, blocks retention of inhibitory avoidance. Here we report that memory is affected by pre- or posttraining infusion of the PAF analog 1-O-hexadecyl-2-N-methylcarbamoyl-sn-glycerol-3-phosphocholine (mc-PAF) into either rat dorsal hippocampus, amygdala, or entorhinal cortex. Male Wistar rats were implanted bilaterally with cannulae in these brain regions. After recovery from surgery, the animals were trained in step-down inhibitory avoidance or in a spatial habituation task and tested for retention 24 h later. mc-PAF (1.0 microgram per side) enhanced retention test performance of the two tasks when infused into the hippocampus before training without altering training session performance. In addition, mc-PAF enhanced retention test performance of the avoidance task when infused into (i) the hippocampus 0 but not 60 min after training; (ii) the amygdala immediately after training; and (iii) the entorhinal cortex 100 but not 0 or 300 min after training. In confirmation of previous findings, BN 52021 (0.5 microgram per side) was found to be amnestic for the avoidance task when infused into the hippocampus or the amygdala immediately but not 30 or more minutes after training or into the entorhinal cortex 100 but not 0 or 300 min after training. These findings support the hypothesis that memory involves PAF-regulated events, possibly LTP, generated at the time of training in hippocampus and amygdala and 100 min later in the entorhinal cortex.