20 resultados para BASEMENT-MEMBRANE
em National Center for Biotechnology Information - NCBI
Resumo:
Anchorage and growth factor independence are cardinal features of the transformed phenotype. Although it is logical that the two pathways must be coregulated in normal tissues to maintain homeostasis, this has not been demonstrated directly. We showed previously that down-modulation of β1-integrin signaling reverted the malignant behavior of a human breast tumor cell line (T4–2) derived from phenotypically normal cells (HMT-3522) and led to growth arrest in a three-dimensional (3D) basement membrane assay in which the cells formed tissue-like acini (14). Here, we show that there is a bidirectional cross-modulation of β1-integrin and epidermal growth factor receptor (EGFR) signaling via the mitogen-activated protein kinase (MAPK) pathway. The reciprocal modulation does not occur in monolayer (2D) cultures. Antibody-mediated inhibition of either of these receptors in the tumor cells, or inhibition of MAPK kinase, induced a concomitant down-regulation of both receptors, followed by growth-arrest and restoration of normal breast tissue morphogenesis. Cross-modulation and tissue morphogenesis were associated with attenuation of EGF-induced transient MAPK activation. To specifically test EGFR and β1-integrin interdependency, EGFR was overexpressed in nonmalignant cells, leading to disruption of morphogenesis and a compensatory up-regulation of β1-integrin expression, again only in 3D. Our results indicate that when breast cells are spatially organized as a result of contact with basement membrane, the signaling pathways become coupled and bidirectional. They further explain why breast cells fail to differentiate in monolayer cultures in which these events are mostly uncoupled. Moreover, in a subset of tumor cells in which these pathways are misregulated but functional, the cells could be “normalized” by manipulating either pathway.
Resumo:
The basement membrane (BM) extracellular matrix induces differentiation and suppresses apoptosis in mammary epithelial cells, whereas cells lacking BM lose their differentiated phenotype and undergo apoptosis. Addition of purified BM components, which are known to induce beta-casein expression, did not prevent apoptosis, indicating that a more complex BM was necessary. A comparison of culture conditions where apoptosis would or would not occur allowed us to relate inhibition of apoptosis to a complete withdrawal from the cell cycle, which was observed only when cells acquired a three-dimensional alveolar structure in response to BM. In the absence of this morphology, both the GI cyclin kinase inhibitor p21/WAF-1 and positive proliferative signals including c-myc and cyclin DI were expressed and the retinoblastoma protein (Rb) continued to be hyperphosphorylated. When we overexpressed either c-myc in quiescent cells or p21 when cells were still cycling, apoptosis was induced. In the absence of three-dimensional alveolar structures, mammary epithelial cells secrete a number of factors including transforming growth factor alpha and tenascin, which when added exogenously to quiescent cells induced expression of c-myc and interleukin-beta1-converting enzyme (ICE) mRNA and led to apoptosis. These experiments demonstrate that a correct tissue architecture is crucial for long-range homeostasis, suppression of apoptosis, and maintenance of differentiated phenotype.
Resumo:
We have isolated overlapping cDNAs encoding the N-terminal non-triple-helical region of mouse alpha 1(XVIII) collagen and shown that three different variants of alpha 1(XVIII) collagen exist. Each of the three variants shows characteristic tissue-specific expression patterns. Immunohistochemical studies show positive staining for alpha 1(XVIII) collagen along the basement membrane zones of vessels in the intestinal villi, the choroid plexus, skin, liver, and kidney. Thus, we conclude that alpha 1(XVIII) collagen may interact (directly or indirectly) with components in basement membrane zones or on the basal surface of endothelial/epithelial cells.
Resumo:
A serpin was identified in normal mammary gland by differential cDNA sequencing. In situ hybridization has detected this serpin exclusively in the myoepithelial cells on the normal and noninvasive mammary epithelial side of the basement membrane and thus was named myoepithelium-derived serine proteinase inhibitor (MEPI). No MEPI expression was detected in the malignant breast carcinomas. MEPI encodes a 405-aa precursor, including an 18-residue secretion signal with a calculated molecular mass of 46 kDa. The predicted sequence of the new protein shares 33% sequence identity and 58% sequence similarity to plasminogen activator inhibitor (PAI)-1 and PAI-2. To determine whether MEPI can modulate the in vivo growth and progression of human breast cancers, we transfected a full-length MEPI cDNA into human breast cancer cells and studied the orthotopic growth of MEPI-transfected vs. control clones in the mammary fat pad of athymic nude mice. Overexpression of MEPI inhibited the invasion of the cells in the in vitro invasion assay. When injected orthotopically into nude mice, the primary tumor volumes, axillary lymph node metastasis, and lung metastasis were significantly inhibited in MEPI-transfected clones as compared with controls. The expression of MEPI in myoepithelial cells may prevent breast cancer malignant progression leading to metastasis.
Resumo:
A mammalian recombinant strategy was established to dissect rules of basement membrane laminin assembly and secretion. The α-, β-, and γ-chain subunits of laminin-1 were expressed in all combinations, transiently and/or stably, in a near-null background. In the absence of its normal partners, the α chain was secreted as intact protein and protein that had been cleaved in the coiled-coil domain. In contrast, the β and γ chains, expressed separately or together, remained intracellular with formation of ββ or βγ, but not γγ, disulfide-linked dimers. Secretion of the β and γ chains required simultaneous expression of all three chains and their assembly into αβγ heterotrimers. Epitope-tagged recombinant α subunit and recombinant laminin were affinity-purified from the conditioned medium of αγ and αβγ clones. Rotary-shadow electron microscopy revealed that the free α subunit is a linear structure containing N-terminal and included globules with a foreshortened long arm, while the trimeric species has the typical four-arm morphology of native laminin. We conclude that the α chain can be delivered to the extracellular environment as a single subunit, whereas the β and γ chains cannot, and that the α chain drives the secretion of the trimeric molecule. Such an α-chain-dependent mechanism could allow for the regulation of laminin export into a nascent basement membrane, and might serve an important role in controlling basement membrane formation.
Resumo:
The human 15-lipoxygenase (15-LO) gene was transfected into rat kidneys in vivo via intra-renal arterial injection. Three days later, acute (passive) or accelerated forms of antiglomerular basement membrane antibody-mediated glomerulonephritis were induced in transfected and nontransfected or sham-transfected controls. Studies of glomerular functions (filtration and protein excretion) and ex vivo glomerular leukotriene B4 biosynthesis at 3 hr, and up to 4 days, after induction of nephritis revealed preservation or normalization of these parameters in transfected kidneys that expressed human 15-LO mRNA and mature protein, but not in contralateral control kidneys or sham-transfected animals. The results provide in vivo-derived data supporting a direct anti-inflammatory role for 15-LO during immune-mediated tissue injury.
Resumo:
What determines the nuclear organization within a cell and whether this organization itself can impose cellular function within a tissue remains unknown. To explore the relationship between nuclear organization and tissue architecture and function, we used a model of human mammary epithelial cell acinar morphogenesis. When cultured within a reconstituted basement membrane (rBM), HMT-3522 cells form polarized and growth-arrested tissue-like acini with a central lumen and deposit an endogenous BM. We show that rBM-induced morphogenesis is accompanied by relocalization of the nuclear matrix proteins NuMA, splicing factor SRm160, and cell cycle regulator Rb. These proteins had distinct distribution patterns specific for proliferation, growth arrest, and acini formation, whereas the distribution of the nuclear lamina protein, lamin B, remained unchanged. NuMA relocalized to foci, which coalesced into larger assemblies as morphogenesis progressed. Perturbation of histone acetylation in the acini by trichostatin A treatment altered chromatin structure, disrupted NuMA foci, and induced cell proliferation. Moreover, treatment of transiently permeabilized acini with a NuMA antibody led to the disruption of NuMA foci, alteration of histone acetylation, activation of metalloproteases, and breakdown of the endogenous BM. These results experimentally demonstrate a dynamic interaction between the extracellular matrix, nuclear organization, and tissue phenotype. They further show that rather than passively reflecting changes in gene expression, nuclear organization itself can modulate the cellular and tissue phenotype.
Resumo:
Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits α6 and β1, but not against α1 and α2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against β1, but not against α6 or α2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against α1 integrins impaired only cell adhesion to type IV collagen. Antibodies against α1, α2, α6, and β1, but not α5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins α1 and α2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against α1 and α2, but not α6 and β1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against α1 and α2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-α6 antibodies. Our data indicate that α1 and α2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas α6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.
Resumo:
Contact of cultured mammary epithelial cells with the basement membrane protein laminin induces multiple responses, including cell shape changes, growth arrest, and, in the presence of prolactin, transcription of the milk protein β-casein. We sought to identify the specific laminin receptor(s) mediating the multiple cell responses to laminin. Using assays with clonal mammary epithelial cells, we reveal distinct functions for the α6β4 integrin, β1 integrins, and an E3 laminin receptor. Signals from laminin for β-casein expression were inhibited in the presence of function-blocking antibodies against both the α6 and β1 integrin subunits and by the laminin E3 fragment. The α6-blocking antibody perturbed signals mediated by the α6β4 integrin, and the β1-blocking antibody perturbed signals mediated by another integrin, the α subunit(s) of which remains to be determined. Neither α6- nor β1-blocking antibodies perturbed the cell shape changes resulting from cell exposure to laminin. However, the E3 laminin fragment and heparin both inhibited cell shape changes induced by laminin, thereby implicating an E3 laminin receptor in this function. These results elucidate the multiplicity of cell-extracellular matrix interactions required to integrate cell structure and signaling and ultimately permit normal cell function.
Resumo:
Ocular cicatricial pemphigoid (OCP) is an autoimmune disease that affects mainly conjunctiva and other squamous epithelia. OCP is histologically characterized by a separation of the epithelium from underlying tissues within the basement membrane zone. Immunopathological studies demonstrate the deposition of anti-basement membrane zone autoantibodies in vivo. Purified IgG from sera of patients with active OCP identified a cDNA clone from a human keratinocyte cDNA library that had complete homology with the cytoplasmic domain of β4-integrin. The sera recognized a 205-kDa protein in human epidermal, human conjunctiva, and tumor cell lysates that was identified as β4-integrin by its reaction with polyclonal and monoclonal antibodies to human β4-integrin. Sera from patients with bullous pemphigoid, pemphigus vulgaris, and cicatricial pemphigoid-like diseases did not recognize the 205-kDa protein, indicating the specificity of the binding. These data strongly implicate a role for human β4-integrin in the pathogenesis of OCP. It should be emphasized that multiple antigens in the basement membrane zone of squamous epithelia may serve as targets for a wide spectrum of autoantibodies observed in vesiculobullous diseases. Molecular definition of these autoantigens will facilitate the classification and characterization of subsets of cicatricial pemphigoid and help distinguishing them from bullous pemphigoid. This study highlights the function and importance of β4-integrin in maintaining the attachment of epithelial cells to the basement membrane.
Resumo:
The blistering disorder, lethal junctional epidermolysis bullosa (JEB), can result from mutations in the LAMB3 gene, which encodes laminin 5 β3 (β3). Appropriate expression of LAMβ3 in JEB skin tissue could potentially ameliorate the symptoms of the underlying disease. To explore the utility of this therapeutic approach, primary keratinocytes from six unrelated JEB patients were transduced with a retroviral vector encoding β3 and used to regenerate human skin on severe combined immunodeficient (SCID) mice. Tissue regenerated from β3-transduced JEB keratinocytes produced phenotypically normal skin characterized by sustained β3 expression and the formation of hemidesmosomes. Additionally, β3 gene transfer corrected the distribution of a number of important basement membrane zone proteins including BPAG2, integrins β4/β1, and laminins α3/γ2. Skin produced from β3-negative (β3[−]) JEB cells mimicked the hallmarks of the disease state and did not exhibit any of the aforementioned traits. Therefore, by effecting therapeutic gene transfer to β3-deficient primary keratinocytes, it is possible to produce healthy, normal skin tissue in vivo. These data support the utility of gene therapy for JEB and highlight the potential for gene delivery in the treatment of human genetic skin disease.
Resumo:
Copper serves as an essential cofactor for a variety of proteins in all living organisms. Previously, we described a human gene (CTR1;SLC31A1) that encodes a high-affinity copper-uptake protein and hypothesized that this protein is required for copper delivery to mammalian cells. Here, we test this hypothesis by inactivating the Ctr1 gene in mice by targeted mutagenesis. We observe early embryonic lethality in homozygous mutant embryos and a deficiency in copper uptake in the brains of heterozygous animals. Ctr1−/− embryos can be recovered at E8.5 but are severely developmentally retarded and morphologically abnormal. Histological analysis reveals discontinuities and variable thickness in the basement membrane of the embryonic region and an imperfect Reichert's membrane, features that are likely due to lack of activity in the collagen cross-linking cupro-enzyme lysyl oxidase. A collapsed embryonic cavity, the absence of an allantois, retarded mesodermal migration, and increased cell death are also apparent. In the brains of heterozygous adult mice, which at 16 months are phenotypically normal, copper is reduced to approximately half compared with control littermates, implicating CTR1 as the required port for copper entry into at least this organ. A study of the spatial and temporal expression pattern of Ctr1 during mouse development and adulthood further shows that CTR1 is ubiquitously transcribed with highest expression observed in the specialized epithelia of the choroid plexus and renal tubules and in connective tissues of the eye, ovary, and testes. We conclude that CTR1 is the primary avenue for copper uptake in mammalian cells.
Resumo:
Sun exposure has been clearly implicated in premature skin aging and neoplastic development. These features are exacerbated in patients with xeroderma pigmentosum (XP), a hereditary disease, the biochemical hallmark of which is a severe deficiency in the nucleotide excision repair of UV-induced DNA lesions. To develop an organotypic model of DNA repair deficiency, we have cultured several strains of primary XP keratinocytes and XP fibroblasts from skin biopsies of XP patients. XP skin comprising both a full-thickness epidermis and a dermal equivalent was succesfully reconstructed in vitro. Satisfactory features of stratification were obtained, but the expression of epidermal differentiation products, such as keratin K10 and loricrin, was delayed and reduced. In addition, the proliferation of XP keratinocytes was more rapid than that of normal keratinocytes. Moreover, increased deposition of cell attachment proteins, α-6 and β-1 integrins, was observed in the basement membrane zone, and β-1 integrin subunit, the expression of which is normally confined to basal keratinocytes, extended into several suprabasal cell layers. Most strikingly, the in vitro reconstructed XP skin displayed numerous proliferative epidermal invasions within dermal equivalents. Epidermal invasion and higher proliferation rate are reminiscent of early steps of neoplasia. Compared with normal skin, the DNA repair deficiency of in vitro reconstructed XP skin was documented by long-lasting persistence of UVB-induced DNA damage in all epidermal layers, including the basal layer from which carcinoma develops. The availability of in vitro reconstructed XP skin provides opportunities for research in the fields of photoaging, photocarcinogenesis, and tissue therapy.
Resumo:
Escape of cancer cells from the circulation (extravasation) is thought to be a major rate-limiting step in metastasis, with few cells being able to extravasate. Furthermore, highly metastatic cells are believed to extravasate more readily than poorly metastatic cells. We assessed in vivo the extravasation ability of highly metastatic ras-transformed NIH 3T3 cells (PAP2) versus control nontumorigenic nontransformed NIH 3T3 cells and primary mouse embryo fibroblasts. Fluorescently labeled cells were injected intravenously into chicken embryo chorioallantoic membrane and analyzed by intravital videomicroscopy. The chorioallantoic membrane is an appropriate model for studying extravasation, since, at the embryonic stage used, the microvasculature exhibits a continuous basement membrane and adult permeability properties. The kinetics of extravasation were assessed by determining whether individual cells (n = 1481) were intravascular, extravascular, or in the process of extravasation, at 3, 6, and 24 h after injection. Contrary to expectations, our results showed that all three cell types extravasated with the same kinetics. By 24 h after injection > 89% of observed cells had completed extravasation from the capillary plexus. After extravasation, individual fibroblasts of all cell types demonstrated preferential migration within the mesenchymal layer toward arterioles, not to venules or lymphatics. Thus in this model and for these cells, extravasation is independent of metastatic ability. This suggests that the ability to extravasate in vivo is not necessarily predictive of subsequent metastasis formation, and that postextravasation events may be key determinants in metastasis.
Resumo:
Tumor-derived adhesion factor (TAF) was previously identified as a cell adhesion molecule secreted by human bladder carcinoma cell line EJ-1. To elucidate the physiological function of TAF, we examined its distribution in human normal and tumor tissues. Immunochemical staining with an anti-TAF monoclonal antibody showed that TAF was specifically accumulated in small blood vessels and capillaries within and adjacent to tumor nests, but not in those in normal tissues. Tumor blood vessel-specific staining of TAF was observed in various human cancers, such as esophagus, brain, lung, and stomach cancers. Double immunofluorescent staining showed apparent colocalization of TAF and type IV collagen in the vascular basement membrane. In vitro experiments demonstrated that TAF preferentially bound to type IV collagen among various extracellular matrix components tested. In cell culture experiments, TAF promoted adhesion of human umbilical vein endothelial cells to type IV collagen substrate and induced their morphological change. Furthermore, when the endothelial cells were induced to form capillary tube-like structures by type I collagen, TAF and type IV collagen were exclusively detected on the tubular structures. The capillary tube formation in vitro was prevented by heparin, which inhibited the binding of TAF to the endothelial cells. These results strongly suggest that TAF contributes to the organization of new capillary vessels in tumor tissues by modulating the interaction of endothelial cells with type IV collagen.