3 resultados para B3 field site

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A human-derived strain of the agent of human granulocytic ehrlichiosis, a recently described emerging rickettsial disease, has been established by serial blood passage in mouse hosts. Larval deer ticks acquired infection by feeding upon such mice and efficiently transmitted the ehrlichiae after molting to nymphs, thereby demonstrating vector competence. The agent was detected by demonstrating Feulgen-positive inclusions in the salivary glands of the experimentally infected ticks and from field-derived adult deer ticks. White-footed mice from a field site infected laboratory-reared ticks with the agent of human granulocytic ehrlichiosis, suggesting that these rodents serve as reservoirs for ehrlichiae as well as for Lyme disease spirochetes and the piroplasm that causes human babesiosis. About 10% of host-seeking deer ticks were infected with ehrlichiae, and of these, 20% also contained spirochetes. Cotransmission of diverse pathogens by the aggressively human-biting deer tick may have a unique impact on public health in certain endemic sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important question in the cell cycle field is how cyclin-dependent kinases (cdks) target their substrates. We have studied the role of a conserved hydrophobic patch on the surface of cyclin A in substrate recognition by cyclin A-cdk2. This hydrophobic patch is ≈35Å away from the active site of cdk2 and contains the MRAIL sequence conserved among a number of mammalian cyclins. In the x-ray structure of cyclin A-cdk2-p27, this hydrophobic patch contacts the RNLFG sequence in p27 that is common to a number of substrates and inhibitors of mammalian cdks. We find that mutation of this hydrophobic patch on cyclin A eliminates binding to proteins containing RXL motifs without affecting binding to cdk2. This docking site is critical for cyclin A-cdk2 phosphorylation of substrates containing RXL motifs, but not for phosphorylation of histone H1. Impaired substrate binding by the cyclin is the cause of the defect in RXL substrate phosphorylation, because phosphorylation can be rescued by restoring a cyclin A–substrate interaction in a heterologous manner. In addition, the conserved hydrophobic patch is important for cyclin A function in cells, contributing to cyclin A’s ability to drive cells out of the G1 phase of the cell cycle. Thus, we define a mechanism by which cyclins can recruit substrates to cdks, and our results support the notion that a high local concentration of substrate provided by a protein–protein interaction distant from the active site is critical for phosphorylation by cdks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a framework to describe the cooperative orientational motions of water molecules in liquid water and around solute molecules in water solutions. From molecular dynamics (MD) simulation a new quantity “site-dipole field” is defined as the averaged orientation of water molecules that pass through each spatial position. In the site-dipole field of bulk water we found large vortex-like structures of more than 10 Å in size. Such coherent patterns persist more than 300 ps although the orientational memory of individual molecules is quickly lost. A 1-ns MD simulation of systems consisting of two amino acids shows that the fluctuations of site-dipole field of solvent are pinned around the amino acids, resulting in a stable dipole-bridge between side-chains of amino acids. The dipole-bridge is significantly formed even for the side-chain separation of 14 Å, which corresponds to five layers of water. The way that dipole-bridge forms sensitively depends on the side-chain orientations and thereby explains the specificity in the solvent-mediated interactions between biomolecules.