82 resultados para Axillary Bud Outgrowth

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage to peripheral nerves often cannot be repaired by the juxtaposition of the severed nerve ends. Surgeons have typically used autologous nerve grafts, which have several drawbacks including the need for multiple surgical procedures and loss of function at the donor site. As an alternative, the use of nerve guidance channels to bridge the gap between severed nerve ends is being explored. In this paper, the electrically conductive polymer—oxidized polypyrrole (PP)—has been evaluated for use as a substrate to enhance nerve cell interactions in culture as a first step toward potentially using such polymers to stimulate in vivo nerve regeneration. Image analysis demonstrates that PC-12 cells and primary chicken sciatic nerve explants attached and extended neurites equally well on both PP films and tissue culture polystyrene in the absence of electrical stimulation. In contrast, PC-12 cells interacted poorly with indium tin oxide (ITO), poly(l-lactic acid) (PLA), and poly(lactic acid-co-glycolic acid) surfaces. However, PC-12 cells cultured on PP films and subjected to an electrical stimulus through the film showed a significant increase in neurite lengths compared with ones that were not subjected to electrical stimulation through the film and tissue culture polystyrene controls. The median neurite length for PC-12 cells grown on PP and subjected to an electrical stimulus was 18.14 μm (n = 5643) compared with 9.5 μm (n = 4440) for controls. Furthermore, animal implantation studies reveal that PP invokes little adverse tissue response compared with poly(lactic acid-co-glycolic acid).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phospholipids are the major components of cell membranes and are required for cellular growth. We studied membrane phosphatidylcholine (PtdCho) biosynthesis in neuronal cells undergoing neurite outgrowth, by using PC12 cells as a model system. When neurite outgrowth was induced by exposing PC12 cells to nerve growth factor for 2 and 4 days, the amounts of [14C]choline incorporated into [14C]phosphatidylcholine per cell (i.e., per DNA) increased approximately 5- and 10-fold, respectively, as compared with control cells, reflecting increases in the rate of PtdCho biosynthesis. [14C]choline uptake was not affected. Analysis of the three major PtdCho biosynthetic enzymes showed that the activity of CDPcholine:1,2-diacylglycerol cholinephosphotransferase was increased by approximately 50% after nerve growth factor treatment, but the activities of choline kinase or choline-phosphate cytidylyltransferase were unaltered; the cholinephosphotransferase displayed a high Km value (≈1,200 μM) for diacylglycerol. Moreover, free cellular diacylglycerol levels increased by approximately 1.5- and 4-fold on the second and fourth days, respectively. These data indicate that PtdCho biosynthesis is enhanced when PC12 cells sprout neurites, and the enhancement is mediated primarily by changes in cholinephosphotransferase activity and its saturation with diacylglycerol. This suggests a novel regulatory role for diacylglycerol in membrane phospholipid biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuritic outgrowth is a striking example of directed motility, powered through the actions of molecular motors. Members of the myosin superfamily of actin-associated motors have been implicated in this complex process. Although conventional myosin II is known to be present in neurons, where it is localized at the leading edge of growth cones and in the cell cortex close to the plasma membrane, its functional involvement in growth cone motility has remained unproven. Here, we show that antisense oligodeoxyribonucleotides, complementary to a specific isoform of conventional myosin (myosin IIB), attenuate filopodial extension whereas sense and scrambled control oligodeoxyribonucleotides have no effect. Attenuation is shown to be reversible, neurite outgrowth being restored after cessation of the antisense regimen. Myosin IIB mRNA was present during active neurite extension, but levels were minimal in phenotypically rounded cells before neurite outgrowth and message levels decreased during antisense treatment. By contrast, the myosin IIA isoform is shown to be expressed constitutively both before and during neurite outgrowth and throughout exposure to myosin IIB antisense oligodeoxyribonucleotides. These results provide direct evidence that a conventional two-headed myosin is required for growth cone motility and is responsible, at least in part, for driving neuritic process outgrowth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cell adhesion molecule L1 is a potent inducer of neurite outgrowth and it has been implicated in X-linked hydrocephalus and related neurological disorders. To investigate the mechanisms of neurite outgrowth stimulated by L1, attempts were made to identify the neuritogenic sites in L1. Fusion proteins containing different segments of the extracellular region of L1 were prepared and different neuronal cells were assayed on substrate-coated fusion proteins. Interestingly, both immunoglobulin (Ig)-like domains 2 and 6 (Ig2, Ig6) promoted neurite outgrowth from dorsal root ganglion cells, whereas neural retinal cells responded only to Ig2. L1 Ig2 contains a previously identified homophilic binding site, whereas L1 Ig6 contains an Arg-Gly-Asp (RGD) sequence. The neuritogenic activity of Ig6 was abrogated by mutations in the RGD site. The addition of RGD-containing peptides also inhibited the promotion of neurite outgrowth from dorsal root ganglion cells by glutathione S-transferase-Ig6, implicating the involvement of an integrin. The monoclonal antibody LM609 against αvβ3 integrin, but not an anti-β1 antibody, inhibited the neuritogenic effects of Ig6. These data thus provide the first evidence that the RGD motif in L1 Ig6 is capable of promoting neurite outgrowth via interaction with the αvβ3 integrin on neuronal cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rho1p is a yeast homolog of mammalian RhoA small GTP-binding protein. Rho1p is localized at the growth sites and required for bud formation. We have recently shown that Bni1p is a potential target of Rho1p and that Bni1p regulates reorganization of the actin cytoskeleton through interactions with profilin, an actin monomer-binding protein. Using the yeast two-hybrid screening system, we cloned a gene encoding a protein that interacted with Bni1p. This protein, Spa2p, was known to be localized at the bud tip and to be implicated in the establishment of cell polarity. The C-terminal 254 amino acid region of Spa2p, Spa2p(1213–1466), directly bound to a 162-amino acid region of Bni1p, Bni1p(826–987). Genetic analyses revealed that both the bni1 and spa2 mutations showed synthetic lethal interactions with mutations in the genes encoding components of the Pkc1p-mitogen-activated protein kinase pathway, in which Pkc1p is another target of Rho1p. Immunofluorescence microscopic analysis showed that Bni1p was localized at the bud tip in wild-type cells. However, in the spa2 mutant, Bni1p was not localized at the bud tip and instead localized diffusely in the cytoplasm. A mutant Bni1p, which lacked the Rho1p-binding region, also failed to be localized at the bud tip. These results indicate that both Rho1p and Spa2p are involved in the localization of Bni1p at the growth sites where Rho1p regulates reorganization of the actin cytoskeleton through Bni1p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial endospores derive much of their longevity and resistance properties from the relative dehydration of their protoplasts. The spore cortex, a peptidoglycan structure surrounding the protoplasm, maintains, and is postulated to have a role in attaining, protoplast dehydration. A structural modification unique to the spore cortex is the removal of all or part of the peptide side chains from the majority of the muramic acid residues and the conversion of 50% of the muramic acid to muramic lactam. A mutation in the cwlD gene of Bacillus subtilis, predicted to encode a muramoyl-l-alanine amidase, results in the production of spores containing no muramic lactam. These spores have normally dehydrated protoplasts but are unable to complete the germination/outgrowth process to produce viable cells. Addition of germinants resulted in the triggering of germination with loss of spore refractility and the release of dipicolinic acid but no degradation of cortex peptidoglycan. Germination in the presence of lysozyme allowed the cwlD spores to produce viable cells and showed that they have normal heat resistance properties. These results (i) suggest that a mechanical activity of the cortex peptidoglycan is not required for the generation of protoplast dehydration but rather that it simply serves as a static structure to maintain dehydration, (ii) demonstrate that degradation of cortex peptidoglycan is not required for spore solute release or partial spore core rehydration during germination, (iii) indicate that muramic lactam is a major specificity determinant of germination lytic enzymes, and (iv) suggest the mechanism by which the spore cortex is degraded during germination while the germ cell wall is left intact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of wing patterning involves precise molecular mechanisms to establish an organizing center at the dorsal–ventral boundary, which functions to direct the development of the Drosophila wing. We report that misexpression of dLMO, a Drosophila LIM-only protein, in specific patterns in the developing wing imaginal disc, disrupts the dorsal–ventral (D-V) boundary and causes errors in wing patterning. When dLMO is misexpressed along the anterior–posterior boundary, extra wing outgrowth occurs, similar to the phenotype seen when mutant clones lacking Apterous, a LIM homeodomain protein known to be essential for normal D-V patterning of the wing, are made in the wing disc. When dLMO is misexpressed along the D-V boundary in third instar larvae, loss of the wing margin is observed. This phenotype is very similar to the phenotype of Beadex, a long-studied dominant mutation that we show disrupts the dLMO transcript in the 3′ untranslated region. dLMO normally is expressed in the wing pouch of the third instar wing imaginal disc during patterning. A mammalian homolog of dLMO is expressed in the developing limb bud of the mouse. This indicates that LMO proteins might function in an evolutionarily conserved mechanism involved in patterning the appendages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ricinosome (synonym, precursor protease vesicle) is a novel organelle, found so far exclusively in plant cells. Electron microscopic studies suggest that it buds off from the endoplasmic reticulum in senescing tissues. Biochemical support for this unusual origin now comes from the composition of the purified organelle, which contains large amounts of a 45-kDa cysteine endoprotease precursor with a C-terminal KDEL motif and the endoplasmic reticulum lumen residents BiP (binding protein) and protein disulfide isomerase. Western blot analysis, peptide sequencing, and mass spectrometry demonstrate retention of KDEL in the protease proform. Acidification of isolated ricinosomes causes castor bean cysteine endopeptidase activation, with cleavage of the N-terminal propeptide and the C-terminal KDEL motif. We propose that ricinosomes accumulate during senescence by programmed cell death and are activated by release of protons from acidic vacuoles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of the source of the odor in the human axillary region is not only of commercial interest but is also important biologically because axillary extracts can alter the length and timing of the female menstrual cycle. In males, the most abundant odor component is known to be E-3-methyl-2-hexenoic acid (E-3M2H), which is liberated from nonodorous apocrine secretions by axillary microorganisms. Recently, it was found that in the apocrine gland secretions, 3M2H is carried to the skin surface bound to two proteins, apocrine secretion odor-binding proteins 1 and 2 (ASOB1 and ASOB2) with apparent molecular masses of 45 kDa and 26 kDa, respectively. To better understand the formation of axillary odors and the structural relationship between 3M2H and its carrier protein, the amino acid sequence and glycosylation pattern of ASOB2 were determined by mass spectrometry. The ASOB2 protein was identified as apolipoprotein D (apoD), a known member of the alpha2mu-microglobulin superfamily of carrier proteins also known as lipocalins. The pattern of glycosylation for axillary apoD differs from that reported for plasma apoD, suggesting different sites of expression for the two glycoproteins. In situ hybridization of an oligonucleotide probe against apoD mRNA with axillary tissue demonstrates that the message for synthesis of this protein is specific to the apocrine glands. These results suggest a remarkable similarity between human axillary secretions and nonhuman mammalian odor sources, where lipocalins have been shown to carry the odoriferous signals used in pheromonal communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The association between human immunodeficiency virus type I (HIV-1) RNA load changes and the emergence of resistant virus variants was investigated in 24 HIV-1-infected asymptomatic persons during 2 years of treatment with zidovudine by sequentially measuring serum HIV-1 RNA load and the relative amounts of HIV-1 RNA containing mutations at reverse transcriptase (RT) codons 70 (K-->R), 41 (M-->L), and 215 (T-->Y/F). A mean maximum decline in RNA load occurred during the first month, followed by a resurgence between 1 and 3 months, which appeared independent of drug-resistance. Mathematical modeling suggests that this resurgence is caused by host-parasite dynamics, and thus reflects infection of the transiently increased numbers of CD4+ lymphocytes. Between 3 and 6 months of treatment, the RNA load returned to baseline values, which was associated with the emergence of virus containing a single lysine to arginine amino acid change at RT codon 70, only conferring an 8-fold reduction in susceptibility. Despite the relative loss of RNA load suppression, selection toward mutations at RT codons 215 and 41 continued. Identical patterns were observed in the mathematical model. While host-parasite dynamics and outgrowth of low-level resistant virus thus appear responsible for the loss of HIV-1 RNA load suppression, zidovudine continues to select for alternative mutations, conferring increasing levels of resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thy-1, a member of the immunoglobulin superfamily, is one of the most abundant glycoproteins on mammalian neurons. Nevertheless, its role in the peripheral or central nervous system is poorly understood. Certain monoclonal antibodies to Thy-1 promote neurite outgrowth by rodent central nervous system neurons in vitro, suggesting that Thy-1 functions, in part, by modulating neurite outgrowth. We describe a binding site for Thy-1 on astrocytes. This Thy-1-binding protein has been characterized by immunofluroesence with specific anti-idiotype monoclonal antibodies and by three competitive binding assays using (i) anti-idiotype antibodies, (ii) purified Thy-1, and (iii) Thy-1-transfected cells. The Thy-1-binding protein may participate in axonal or dendritic development in the nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epsilon 4 allele of apolipoprotein E (apoE) is a major risk factor for Alzheimer disease, suggesting that apoE may directly influence neurons in the aging brain. Recent data suggest that apoE-containing lipoproteins can influence neurite outgrowth in an isoform-specific fashion. The neuronal mediators of apoE effects have not been clarified. We show here that in a central nervous system-derived neuronal cell line, apoE3 but not apoE4 increases neurite extension. The effect of apoE3 was blocked at low nanomolar concentrations by purified 39-kDa protein that regulates ligand binding to the low density lipoprotein receptor-related protein (LRP). Anti-LRP antibody also completely abolished the neurite-promoting effect of apoE3. Understanding isoform-specific cell biological processes mediated by apoE-LRP interactions in central nervous system neurons may provide insight into Alzheimer disease pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A serpin was identified in normal mammary gland by differential cDNA sequencing. In situ hybridization has detected this serpin exclusively in the myoepithelial cells on the normal and noninvasive mammary epithelial side of the basement membrane and thus was named myoepithelium-derived serine proteinase inhibitor (MEPI). No MEPI expression was detected in the malignant breast carcinomas. MEPI encodes a 405-aa precursor, including an 18-residue secretion signal with a calculated molecular mass of 46 kDa. The predicted sequence of the new protein shares 33% sequence identity and 58% sequence similarity to plasminogen activator inhibitor (PAI)-1 and PAI-2. To determine whether MEPI can modulate the in vivo growth and progression of human breast cancers, we transfected a full-length MEPI cDNA into human breast cancer cells and studied the orthotopic growth of MEPI-transfected vs. control clones in the mammary fat pad of athymic nude mice. Overexpression of MEPI inhibited the invasion of the cells in the in vitro invasion assay. When injected orthotopically into nude mice, the primary tumor volumes, axillary lymph node metastasis, and lung metastasis were significantly inhibited in MEPI-transfected clones as compared with controls. The expression of MEPI in myoepithelial cells may prevent breast cancer malignant progression leading to metastasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SH2 domain-containing tyrosine phosphatase Shp2 plays a pivotal role during the gastrulation of vertebrate embryos. However, because of the complex phenotype observed in mouse mutant embryos, the precise role of Shp2 during development is unclear. To define the specific functions of this phosphatase, Shp2 homozygous mutant embryonic stem cells bearing the Rosa-26 LacZ transgene were isolated and used to perform a chimeric analysis. Here, we show that Shp2 mutant cells amass in the tail bud of embryonic day 10.5 chimeric mouse embryos and that this accumulation begins at the onset of gastrulation. At this early stage, Shp2 mutant cells collect in the primitive streak of the epiblast and thus show deficiencies in their contribution to the mesoderm lineage. In high-contribution chimeras, we show that overaccumulation of Shp2 mutant cells at the posterior end of the embryo results in two abnormal phenotypes: spina bifida and secondary neural tubes. Consistent with a failure to undergo morphogenic movements at gastrulation, Shp2 is required for embryo fibroblast cells to mount a positive chemotactic response to acidic fibroblast growth factor in vitro. Our results demonstrate that Shp2 is required at the initial steps of gastrulation, as nascent mesodermal cells form and migrate away from the primitive streak. The aberrant behavior of Shp2 mutant cells at gastrulation may result from their inability to properly respond to signals initiated by fibroblast growth factors.