2 resultados para Autonomic managers

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutation of the reeler gene (Reln) disrupts neuronal migration in several brain regions and gives rise to functional deficits such as ataxic gait and trembling in the reeler mutant mouse. Thus, the Reln product, reelin, is thought to control cell–cell interactions critical for cell positioning in the brain. Although an abundance of reelin transcript is found in the embryonic spinal cord [Ikeda, Y. & Terashima, T. (1997) Dev. Dyn. 210, 157–172; Schiffmann, S. N., Bernier, B. & Goffinet, A. M. (1997) Eur. J. Neurosci. 9, 1055–1071], it is generally thought that neuronal migration in the spinal cord is not affected by reelin. Here, however, we show that migration of sympathetic preganglionic neurons in the spinal cord is affected by reelin. This study thus indicates that reelin affects neuronal migration outside of the brain. Moreover, the relationship between reelin and migrating preganglionic neurons suggests that reelin acts as a barrier to neuronal migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few studies have documented the response of gravitropically curved organs to a withdrawal of a constant gravitational stimulus. The effects of stimulus withdrawal on gravitropic curvature were studied by following individual roots of cress (Lepidium sativum L.) through reorientation and clinostat rotation. Roots turned to the horizontal curved down 62° and 88° after 1 and 5 h, respectively. Subsequent rotation on a clinostat for 6 h resulted in root straightening through a loss of gravitropic curvature in older regions and through new growth becoming aligned closer to the prestimulus vertical. However, these roots did not return completely to the prestimulus vertical, indicating the retention of some gravitropic response. Clinostat rotation shifted the mean root angle −36° closer to the prestimulus vertical, regardless of the duration of prior horizontal stimulation. Control roots (no horizontal stimulation) were slanted at various angles after clinostat rotation. These findings indicate that gravitropic curvature is not necessarily permanent, and that the root retains some commitment to its equilibrium orientation prior to gravitropic stimulation.