10 resultados para Autoantibody
em National Center for Biotechnology Information - NCBI
Resumo:
The Fas/Fas ligand (FasL) system participates in regulation of the immune system through the apoptotic process. However, the extent to which abnormalities in this system are involved in the loss of self-tolerance and development of autoimmune disease not associated with Fas/FasL mutations remains unknown. The present study addresses this issue in Fas/FasL-intact, systemic lupus erythematosus (SLE)-prone (NZB × NZW) (NZB/W) F1 mice. While splenic B cells from 2-month-old mice before overt SLE expressed Fas poorly, in vitro stimulation with an agonistic anti-CD40 mAb up-regulated their Fas expression, thus revealing the existence of two populations: one was Fashigh and highly susceptible to anti-Fas mAb-induced apoptosis, and the other was Faslow and apoptosis-resistant. The Faslow cells were included in the CD5+ B cell subpopulation and contained most of the cells that produced IgM anti-DNA antibodies. The isotype of anti-DNA antibodies switches from IgM to IgG in NZB/W F1 mice at ages beginning at about 6 months. These IgG anti-DNA antibodies were produced almost exclusively by a subpopulation of splenic B cells that spontaneously expressed low levels of Fas in vivo and were apoptosis-resistant. The findings indicate that precursor B cells for autoantibody production and presumably autoantibody-secreting cells in these mice are relatively resistant to Fas-mediated apoptosis, a finding supporting the concept that abnormalities of Fas-mediated apoptotic process are involved in the development of autoreactive B cells in Fas/FasL-intact autoimmune disease.
Resumo:
Helper T (Th) cells are classified as Th1 or Th2 cells by virtue of cytokine secretion and function as mediators of cellular or humoral immunity, respectively. Cytokines also regulate the differentiation of Th cells. For example, interleukin (IL)-12 promotes Th1 and suppresses Th2 cell development, suggesting that IL-12 may be useful therapeutically in Th2-mediated autoimmune and allergic disorders. Therefore, the effect of systemic IL-12 treatment on in vivo autoantibody synthesis in hepatitis B e antigen (HBeAg)-expressing transgenic mice, which is dependent on self-reactive Th2 cells, was examined. Low-dose IL-12 significantly inhibited autoantibody production by shifting the Th2-mediated response toward Th1 predominance. Additionally, previous studies suggest that a predominance of HBeAg-specific Th2-type cells may contribute to chronicity in hepatitis B virus infection. Therefore, IL-12 may also prove beneficial in modulating the HBeAg-specific Th response to favor viral clearance in chronic hepatitis B virus infection.
Resumo:
Combinatorial IgG Fab phage display libraries prepared from a systemic lupus erythematosus (SLE) donor and a healthy donor were affinity selected against human placental DNA. Human monoclonal antibody Fab fragments specific for DNA were isolated from both libraries, although Fabs of the highest affinity were isolated only from the lupus library. Generally, apparent affinities of the Fabs for human placental DNA, purified double-stranded DNA, and denatured DNA were approximately equivalent. Surface plasmon resonance indicated Fab binding constants for a double-stranded oligodeoxynucleotide of 0.2-1.3 x 10(8) M-1. The higher-affinity Fabs, as ranked by binding to human placental DNA or to the oligonucleotide probe, tested positive in the Crithidia luciliae assay commonly used in the diagnosis of SLE, and interestingly the genes encoding the heavy-chain variable regions of these antibodies displayed evidence of only minimal somatic hypermutation. The heavy chains of the SLE Fabs were characterized by a predominance of basic residues toward the N terminus of complementarity-determining region 3 (CDR3). The crucial role of heavy-chain CDR3 (HCDR3) in high-affinity DNA recognition was suggested by the creation of DNA binding in an unrelated antibody by HCDR3 transplantation from SLE antibodies. We propose that high-affinity DNA-binding antibodies can arise in SLE without extensive somatic hypermutation in the variable-region genes because of the expression of inappropriate HCDR3s.
Resumo:
The NOD (nonobese diabetic) mouse has been studied as an animal model for autoimmune insulin-dependent diabetes and Sjögren’s syndrome. NOD.Igμnull mice, which lack functional B lymphocytes, develop progressive histopathologic lesions of the submandibular and lachrymal glands similar to NOD mice, but in the absence of autoimmune insulitis and diabetes. Despite the focal appearance of T cells in salivary and lachrymal tissues, NOD.Igμnull mice fail to lose secretory function as determined by stimulation of the muscarinic/cholinergic receptor by the agonist pilocarpine, suggesting a role for B cell autoantibodies in mediating exocrine dryness. Infusion of purified serum IgG or F(ab′)2 fragments from parental NOD mice or human primary Sjögren’s syndrome patients, but not serum IgG from healthy controls, alters stimulated saliva production, an observation consistent with antibody binding to neural receptors. Furthermore, human patient IgG fractions competitively inhibited the binding of the muscarinic receptor agonist, [3H]quinuclidinyl benzilate, to salivary gland membranes. This autoantibody activity is lost after preadsorption with intact salivary cells. These findings indicate that autoantibodies play an important part in the functional impairment of secretory processes seen in connection with the autoimmune exocrinopathy of Sjögren’s syndrome.
Resumo:
With the development of an insulin autoantibody (IAA) assay performed in 96-well filtration plates, we have evaluated prospectively the development of IAA in NOD mice (from 4 weeks of age) and children (from 7 to 10 months of age) at genetic risk for the development of type 1 diabetes. NOD mice had heterogeneous expression of IAA despite being inbred. IAA reached a peak between 8 and 16 weeks and then declined. IAA expression by NOD mice at 8 weeks of age was strongly associated with early development of diabetes, which occurred at 16–18 weeks of age (NOD mice IAA+ at 8 weeks: 83% (5/6) diabetic by 18 weeks versus 11% (1/9) of IAA negative at 8 weeks; P < .01). In man, IAA was frequently present as early as 9 months of age, the first sampling time. Of five children found to have persistent IAA before 1 year of age, four have progressed to diabetes (all before 3.5 years of age) and the fifth is currently less than age 2. Of the 929 children not expressing persistent IAA before age 1, only one has progressed to diabetes to date (age onset 3), and this child expressed IAA at his second visit (age 1.1). In new onset patients, the highest levels of IAA correlated with an earlier age of diabetes onset. Our data suggest that the program for developing diabetes of NOD mice and humans is relatively “fixed” early in life and, for NOD mice, a high risk of early development of diabetes is often determined by 8 weeks of age. With such early determination of high risk of progression to diabetes, immunologic therapies in humans may need to be tested in children before the development of IAA for maximal efficacy.
Resumo:
Transcriptional inactivation of one X chromosome in mammalian female somatic cells leads to condensation of the inactive X chromosome into the heterochromatic sex chromatin, or Barr body. Little is known about the molecular composition and structure of the Barr body or the mechanisms leading to its formation in female nuclei. Because human sera from patients with autoimmune diseases often contain antibodies against a variety of cellular components, we reasoned that some autoimmune sera may contain antibodies against proteins associated with the Barr body. Therefore, we screened autoimmune sera by immunofluorescence of human fibroblasts and identified one serum that immunostained a distinct nuclear structure with a size and nuclear localization consistent with the Barr body. The number of these structures was consistent with the number of Barr bodies expected in diploid female fibroblasts containing two to five X chromosomes. Immunostaining with the serum followed by fluorescence in situ hybridization with a probe against XIST RNA demonstrated that the major fluorescent signal from the autoantibody colocalized with XIST RNA. Further analysis of the serum showed that it stains human metaphase chromosomes and a nuclear structure consistent with the inactive X in female mouse fibroblasts. However, it does not exhibit localization to a Barr body-like structure in female mouse embryonic stem cells or in cells from female mouse E7.5 embryos. The lack of staining of the inactive X in cells from female E7.5 embryos suggests the antigen(s) may be involved in X inactivation at a stage subsequent to initiation of X inactivation. This demonstration of an autoantibody recognizing an antigen(s) associated with the Barr body presents a strategy for identifying molecular components of the Barr body and examining the molecular basis of X inactivation.
Resumo:
Human T-cell-mediated autoimmune diseases are genetically linked to particular alleles of MHC class II genes. Susceptibility to pemphigus vulgaris (PV), an autoimmune disease of the skin, is linked to a rare subtype of HLA-DR4 (DRB1*0402, 1 of 22 known DR4 subtypes). The PV-linked DR4 subtype differs from a rheumatoid arthritis-associated DR4 subtype (DRB1*0404) only at three residues (DR beta 67, 70, and 71). The disease is caused by autoantibodies against desmoglein 3 (DG), and T cells are thought to trigger the autoantibody production against this keratinocyte adhesion molecule. Based on the DRB1*0402 binding motif, seven candidate peptides of the DG autoantigen were identified. T cells from four PV patients with active disease responded to one of these DG peptides (residues 190-204); two patients also responded to DG-(206-220). T-cell clones specific for DG-(190-204) secreted high levels of interleukins 4 and 10, indicating that they may be important in triggering the production of DG-specific autoantibodies. The DG-(190-204) peptide was presented by the disease-linked DRB1*0402 molecule but not by other DR4 subtypes. Site-directed mutagenesis of DRB1*0402 demonstrated that selective presentation of DG-(190-204), which carries a positive charge at the P4 position, was due to the negatively charged residues of the P4 pocket (DR beta 70 and 71). DR beta 71 has a negative charge in DRB1*0402 but a positive charge in other DR4 subtypes, including the DR4 subtypes linked to rheumatoid arthritis. The charge of the P4 pocket in the DR4 peptide binding site therefore appears to be a critical determinant of MHC-linked susceptibility to PV and rheumatoid arthritis.
Resumo:
The pathogenesis of systemic lupus erythematosus is thought to be primarily under genetic control, with environmental factors playing a secondary role. However, it has been shown recently that intraperitoneal injection of pristane (2,6,10,14-tetramethylpentadecane) induces autoantibodies typical of lupus in BALB/c mice, a strain not usually considered to be genetically susceptible to the disease. In this study, the induction of autoimmune disease by pristane was investigated. BALB/c mice receiving pristane were tested for autoantibody production and histopathological evidence of glomerulonephritis. Six of 11 mice developed IgM anti-single-stranded DNA antibodies shortly after receiving pristane and 4 developed IgM anti-histone antibodies, but anti-double-stranded DNA antibodies were absent. IgG anti-DNA and anti-histone antibodies were absent. In contrast, the lupus-associated anti-nuclear ribonucleoprotein/Sm and anti-Su autoantibodies produced by these mice were predominantly IgG. In addition to autoantibodies, most of the mice developed significant proteinuria. Light microscopy of the kidney showed segmental or diffuse proliferative glomerulonephritis. Electron microscopy showed subepithelial and mesangial immune-complex deposits and epithelial foot process effacement. Immunofluorescence revealed striking glomerular deposition of IgM, IgG, and C3 with a mesangial or mesangiocapillary distribution. Thus, pristane induces immune-complex glomerulonephritis in association with autoantibodies typical of lupus in BALB/c mice. These data support the idea that lupus is produced by an interplay of genetic and environmental factors and that unlike the MRL or (NZB x W)F1 mouse models, in which genetic susceptibility factors are of primary importance, environmental factors are of considerable importance in the autoimmune disease of pristane-treated BALB/c mice.
Resumo:
We identified an autoantibody that reacts with calpastatin [an inhibitor protein of the calcium-dependent neutral protease calpain (EC 3.4.22.17)]. In early immunoblot studies, sera from patients with rheumatoid arthritis (RA) recognized unidentified 60-, 45-, and 75-kDa proteins in HeLa cell extracts. To identify these autoantigens, we used patient sera to clone cDNAs from a lambda gt11 expression library. We isolated clones of four genes that expressed fusion proteins recognized by RA sera. The 1.2-kb cDNA insert (termed RA-6) appeared to encode a polypeptide corresponding to the 60-kDa antigen from HeLa cells, since antibodies bound to the RA-6 fusion protein also reacted with a 60-kDa HeLa protein. The deduced amino acid sequence of the RA-6 cDNA was completely identical with the C-terminal 178 amino acids of human calpastatin except for one amino acid substitution. Patient sera that reacted with the RA-6 also bound pig muscle calpastatin, and a monoclonal antibody to human calpastatin recognized the RA-6 fusion protein, confirming the identity of RA-6 with calpastatin. Moreover, the purified RA-6 fusion protein inhibited the proteolytic activity of calpain, and IgG from a serum containing anti-calpastatin antibodies blocked the calpastatin activity of the RA-6 fusion protein. Immunoblots of the RA-6 product detected autoantibodies to calpastatin in 57% of RA patients; this incidence was significantly higher than that observed in other systemic rheumatic diseases, including systemic lupus erythematosus (27%), polymyositis/dermatomyositis (24%), systemic sclerosis (38%), and overlap syndrome (29%). Thus, anti-calpastatin antibodies are present most frequently in patients with RA and may participate in pathogenic mechanisms of rheumatic diseases.
Resumo:
Pemphigus vulgaris (PV) is a rare, potentially fatal, autoimmune disease that affects the skin and mucous membranes. The PV antigen (PVA) has been characterized as desmoglein 3. PV patients carry HLA-DR4- or HLA-DR6-bearing extended haplotypes. We recently demonstrated that patients with active disease have high titers of PV autoantibodies of the IgG1 and IgG4 subclasses. Patients in remission, healthy unaffected relatives, and some MHC-matched normal individuals have low levels of PV autoantibodies, which are IgG1 only. Furthermore, intraperitoneal injection of IgG from patients with active disease caused clinical disease in mice, but IgG from patients in remission, healthy relatives, or MHC-matched normal individuals did not. We prepared 12 peptides of 30 amino acids each (peptides Bos 1-12) spanning the extracellular domain of PVA. Patients with active disease recognize peptides Bos 1 and Bos 6 with high titers of IgG1 and IgG4 autoantibodies. Patients in remission have IgG1 autoantibodies to peptide Bos 1 only, in statistically significantly lower titers (P < 0.01). They no longer have IgG4 subclass autoantibodies to peptide Bos 6. Healthy relatives and normal unrelated individuals have low levels of only IgG1 autoantibodies that recognize only Bos 1. In vitro studies indicate that Bos 6-specific IgG and, to a lesser extent, Bos 1-specific IgG can cause acantholysis. Our data suggest that Bos 6-specific IgG4 is probably the main acantholytic autoantibody, while Bos 1-specific IgG4 may act as a facilitator or enhancer of the process. In this study we illustrate some of the paradigms that demonstrate the interactions between the MHC, subclass of autoantibodies, and peptide specificities of the autoantibodies in the autoimmune process. Thus, PV provides an important model to study the pathogenesis of autoimmunity.