7 resultados para Authentic leader
em National Center for Biotechnology Information - NCBI
Resumo:
The role of spliced leader RNA (SL RNA) in trans-splicing in Caenorhabditis elegans has been studied through a combination of in vitro mutagenesis and in vivo complementation of rrs-1 mutant nematodes, which lack endogenous SL1 RNA. Three classes of mutant SL1 RNAs have been found—those that rescue the lethal phenotype at low concentration of transforming DNA, those that rescue at high but not low concentration, and those that do not rescue at all. These studies showed that some mutations in the otherwise highly conserved 22-nt spliced leader are tolerated for splicing and post-splicing events. A longer spliced leader also can be tolerated but only when present in high copy number. Changes in the first 16 nucleotides result in the appearance of no SL RNA, consistent with the in vitro studies by others showing that the SL1 RNA promoter partly resides within the spliced leader sequence.
Resumo:
In higher eukaryotes, translation of some mRNAs occurs by internal initiation. It is not known, however, whether this mechanism is used to initiate the translation of any yeast mRNAs. In this report, we identify naturally occurring nucleotide sequences that function as internal ribosome entry sites (IRESes) within the 5′ leader sequences of Saccharomyces cerevisiae YAP1 and p150 mRNAs. When tested in the 5′ untranslated regions of monocistronic reporter genes, both leader sequences enhanced translation efficiency in vegetatively growing yeast cells. Moreover, when tested in the intercistronic region of dicistronic mRNAs, both sequences were shown to contain IRESes that functioned in living cells. The activity of the p150 leader was much greater than that of the YAP1 leader. The second cistron was not expressed in control dicistronic constructs that lacked these sequences or contained the 5′ leader sequence of the CLN3 mRNA in the intercistronic region. Further analyses of the p150 IRES revealed that it contained several nonoverlapping segments that were able independently to mediate internal initiation. These results suggested a modular composition for the p150 IRES that resembled the composition of IRESes contained within some cellular mRNAs of higher eukaryotes. Both YAP1 and p150 leaders contain several complementary sequence matches to yeast 18S rRNA. The findings are discussed in terms of our understanding of internal initiation in higher eukaryotes.
Resumo:
Typical general transcription factors, such as TATA binding protein and TFII B, have not yet been identified in any member of the Trypanosomatidae family of parasitic protozoa. Interestingly, mRNA coding genes do not appear to have discrete transcriptional start sites, although in most cases they require an RNA polymerase that has the biochemical properties of eukaryotic RNA polymerase II. A discrete transcription initiation site may not be necessary for mRNA synthesis since the sequences upstream of each transcribed coding region are trimmed from the nascent transcript when a short m7G-capped RNA is added during mRNA maturation. This short 39 nt m7G-capped RNA, the spliced leader (SL) sequence, is expressed as an ∼100 nt long RNA from a set of reiterated, though independently transcribed, genes in the trypanosome genome. Punctuation of the 5′ end of mRNAs by a m7G cap-containing spliced leader is a developing theme in the lower eukaryotic world; organisms as diverse as Euglena and nematode worms, including Caenorhabditis elegans, utilize SL RNA in their mRNA maturation programs. Towards understanding the coordination of SL RNA and mRNA expression in trypanosomes, we have begun by characterizing SL RNA gene expression in the model trypanosome Leptomonas seymouri. Using a homologous in vitro transcription system, we demonstrate in this study that the SL RNA is transcribed by RNA polymerase II. During SL RNA transcription, accurate initiation is determined by an initiator element with a loose consensus of CYAC/AYR(+1). This element, as well as two additional basal promoter elements, is divergent in sequence from the basal transcription elements seen in other eukaryotic gene promoters. We show here that the in vitro transcription extract contains a binding activity that is specific for the initiator element and thus may participate in recruiting RNA polymerase II to the SL RNA gene promoter.
Resumo:
A search of databases with the sequence from the 5′ untranslated region of a Hydra cDNA clone encoding a receptor protein-tyrosine kinase revealed that a number of Hydra cDNAs contain one of two different sequences at their 5′ ends. This finding suggested the possibility that mRNAs in Hydra receive leader sequences by trans-splicing. This hypothesis was confirmed by the finding that the leader sequences are transcribed as parts of small RNAs encoded by genes located in the 5S rRNA clusters of Hydra. The two spliced leader (SL) RNAs (SL-A and -B) contain splice donor dinucleotides at the predicted positions, and genes that receive SLs contain splice acceptor dinucleotides at the predicted positions. Both of the SL RNAs are bound by antibody against trimethylguanosine, suggesting that they contain a trimethylguanosine cap. The predicted secondary structures of the Hydra SL RNAs show significant differences from the structures predicted for the SLs of other organisms. Messenger RNAs have been identified that can receive either SL-A or -B, although the impact of the two different SLs on the function of the mRNA is unknown. The presence and features of SL addition in the phylum Cnidaria raise interesting questions regarding the evolution of this process.
Resumo:
The threonyl-tRNA synthetase gene, thrS, is a member of a family of Gram-positive genes that are induced following starvation for the corresponding amino acid by a transcriptional antitermination mechanism involving the cognate uncharged tRNA. Here we show that an additional level of complexity exists in the control of the thrS gene with the mapping of an mRNA processing site just upstream of the transcription terminator in the thrS leader region. The processed RNA is significantly more stable than the full-length transcript. Under nonstarvation conditions, or following starvation for an amino acid other than threonine, the full-length thrS mRNA is more abundant than the processed transcript. However, following starvation for threonine, the thrS mRNA exists primarily in its cleaved form. This can partly be attributed to an increased processing efficiency following threonine starvation, and partly to a further, nonspecific increase in the stability of the processed transcript under starvation conditions. The increased stability of the processed RNA contributes significantly to the levels of functional RNA observed under threonine starvation conditions, previously attributed solely to antitermination. Finally, we show that processing is likely to occur upstream of the terminator in the leader regions of at least four other genes of this family, suggesting a widespread conservation of this phenomenon in their control.
Resumo:
Recent developments in multidimensional heteronuclear NMR spectroscopy and large-scale synthesis of uniformly 13C- and 15N-labeled oligonucleotides have greatly improved the prospects for determination of the solution structure of RNA. However, there are circumstances in which it may be advantageous to label only a segment of the entire RNA chain. For example, in a larger RNA molecule the structural question of interest may reside in a localized domain. Labeling only the corresponding nucleotides simplifies the spectrum and resonance assignments because one can filter proton spectra for coupling to 13C and 15N. Another example is in resolving alternative secondary structure models that are indistinguishable in imino proton connectivities. Here we report a general method for enzymatic synthesis of quantities of segmentally labeled RNA molecules required for NMR spectroscopy. We use the method to distinguish definitively two competing secondary structure models for the 5' half of Caenorhabditis elegans spliced leader RNA by comparison of the two-dimensional [15N] 1H heteronuclear multiple quantum correlation spectrum of the uniformly labeled sample with that of a segmentally labeled sample. The method requires relatively small samples; solutions in the 200-300 microM concentration range, with a total of 30 nmol or approximately 40 micrograms of RNA in approximately 150 microliters, give strong NMR signals in a short accumulation time. The method can be adapted to label an internal segment of a larger RNA chain for study of localized structural problems. This definitive approach provides an alternative to the more common enzymatic and chemical footprinting methods for determination of RNA secondary structure.
Resumo:
A peroxisomal location for insulin-degrading enzyme (IDE) has been defined by confocal immunofluorescence microscopy of stably transfected CHO cells overexpressing IDE and digitonin-permeabilization studies in normal nontransfected fibroblasts. The functional significance of IDE in degrading cleaved leader peptides of peroxisomal proteins targeted by the type II motif was evaluated with a synthetic peptide corresponding to the type II leader peptide of prethiolase. The peptide effectively competed for degradation and cross-linking of the high-affinity substrate 125I-labeled insulin to IDE. Direct proteolysis of the leader peptide of prethiolase was confirmed by HPLC; degradation was inhibited by immunodepletion with an antibody to IDE. Phylogenetic analysis of proteinases related to IDE revealed sequence similarity to mitochondrial processing peptidases.