3 resultados para Augmented Lagrangians

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth, differentiation, and programmed cell death (apoptosis) are mainly controlled by cytokines. The Janus kinase–signal transducers and activators of transcription (JAK-STAT) signal pathway is an important component of cytokine signaling. We have previously shown that STAT3 induces a molecule designated as SSI-1, which inhibits STAT3 functions. To clarify the physiological roles of SSI-1 in vivo, we generated, here, mice lacking SSI-1. These SSI-1−/− mice displayed growth retardation and died within 3 weeks after birth. Lymphocytes in the thymus and spleen of the SSI-1−/− mice exhibited accelerated apoptosis with aging, and their number was 20–25% of that in SSI-1+/+ mice at 10 days of age. However, the differentiation of lymphocytes lacking SSI-1 appeared to be normal. Among various pro- and anti-apoptotic molecules examined, an up-regulation of Bax was found in lymphocytes of the spleen and thymus of SSI-1−/− mice. These findings suggest that SSI-1 prevents apoptosis by inhibiting the expression of Bax.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic acquired resistance is an important component of the disease-resistance arsenal of plants, and is associated with an enhanced potency for activating local defense responses upon pathogen attack. Here we demonstrate that pretreatment with benzothiadiazole (BTH), a synthetic activator of acquired resistance in plants, augmented the sensitivity for low-dose elicitation of coumarin phytoalexin secretion by cultured parsley (Petroselinum crispum L.) cells. Enhanced coumarin secretion was associated with potentiated activation of genes encoding Phe ammonia-lyase (PAL). The augmentation of PAL gene induction was proportional to the length of pretreatment with BTH, indicating time-dependent priming of the cells. In contrast to the PAL genes, those for anionic peroxidase were directly induced by BTH in the absence of elicitor, thus confirming a dual role for BTH in the activation of plant defenses. Strikingly, the ability of various chemicals to enhance plant disease resistance correlated with their capability to potentiate parsley PAL gene elicitation, emphasizing an important role for defense response potentiation in acquired plant disease resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA-binding activity of the wild-type p53 is central to its function in vivo. However, recombinant or in vitro translated wild-type p53 proteins, unless modified, are poor DNA binders. The fact that the in vitro produced protein gains DNA-binding activity upon modification at the C terminus raises the possibility that similar mechanisms may exist in the cell. Data presented here show that a C-terminal alternatively spliced wild-type p53 (ASp53) mRNA expressed by bacteria or transcribed in vitro codes for a p53 protein that efficiently binds DNA. Our results support the conclusion that the augmented DNA binding activity of an ASp53 protein is probably due to attenuation of the negative effect residing at the C terminus of the wild-type p53 protein encoded by the regularly spliced mRNA (RSp53) rather than acquisition of additional functionality by the alternatively spliced C' terminus. In addition, we found that ASp53 forms a complex with the non-DNA-binding RSp53, which in turn blocks the DNA-binding activity of ASp53. Interaction between these two wild-type p53 proteins may underline a mechanism that controls the activity of the wild-type p53 protein in the cell.