4 resultados para Astrographic catalog and chart
em National Center for Biotechnology Information - NCBI
Resumo:
The Oral Cancer Gene Database (OrCGDB; http://www.tumor-gene.org/Oral/oral.html) was developed to provide the biomedical community with easy access to the latest information on the genes involved in oral cancer. The information is stored in a relational database and accessed through a WWW interface. The OrCGDB is organized by gene name, which is linked to information describing properties of the gene. This information is stored as a collection of findings (‘facts’) that are entered by the database curator in a semi-structured format from information in primary publications using a WWW interface. These facts include causes of oncogenic activation, chromosomal localization of the gene, mutations associated with the gene, the biochemical identity and activity of the gene product, synonyms for the gene name and a variety of clinical information. Each fact is associated with a MEDLINE citation. The user can search the OrCGDB by gene name or by entering a textword. The OrCGDB is part of a larger WWW-based tumor gene database and represents a new approach to catalog and display the research literature.
Resumo:
A computational system for the prediction of polymorphic loci directly and efficiently from human genomic sequence was developed and verified. A suite of programs, collectively called pompous (polymorphic marker prediction of ubiquitous simple sequences) detects tandem repeats ranging from dinucleotides up to 250 mers, scores them according to predicted level of polymorphism, and designs appropriate flanking primers for PCR amplification. This approach was validated on an approximately 750-kilobase region of human chromosome 3p21.3, involved in lung and breast carcinoma homozygous deletions. Target DNA from 36 paired B lymphoblastoid and lung cancer lines was amplified and allelotyped for 33 loci predicted by pompous to be variable in repeat size. We found that among those 36 predominately Caucasian individuals 22 of the 33 (67%) predicted loci were polymorphic with an average heterozygosity of 0.42. Allele loss in this region was found in 27/36 (75%) of the tumor lines using these markers. pompous provides the genetic researcher with an additional tool for the rapid and efficient identification of polymorphic markers, and through a World Wide Web site, investigators can use pompous to identify polymorphic markers for their research. A catalog of 13,261 potential polymorphic markers and associated primer sets has been created from the analysis of 141,779,504 base pairs of human genomic sequence in GenBank. This data is available on our Web site (pompous.swmed.edu) and will be updated periodically as GenBank is expanded and algorithm accuracy is improved.