2 resultados para Ast-b2129
em National Center for Biotechnology Information - NCBI
Resumo:
Three different base paired stems form between U2 and U6 snRNA over the course of the mRNA splicing reaction (helices I, II and III). One possible function of U2/U6 helix II is to facilitate subsequent U2/U6 helix I and III interactions, which participate directly in catalysis. Using an in vitro trans-splicing assay, we investigated the function of sequences located just upstream from the branch site (BS). We find that these upstream sequences are essential for stable binding of U2 to the branch region, and for U2/U6 helix II formation, but not for initial U2/BS pairing. We also show that non-functional upstream sequences cause U2 snRNA stem–loop IIa to be exposed to dimethylsulfate modification, perhaps reflecting a U2 snRNA conformational change and/or loss of SF3b proteins. Our data suggest that initial binding of U2 snRNP to the BS region must be stabilized by an interaction with upstream sequences before U2/U6 helix II can form or U2 stem–loop IIa can participate in spliceosome assembly.
Resumo:
We have investigated the differentiation potential of precursor cells within the developing spinal cord of mice and have shown that spinal cord cells from embryonic day 10 specifically give rise to neurons when plated onto an astrocytic monolayer, Ast-1. These neurons had the morphology of motor neurons and > 83% expressed the motor neuron markers choline acetyltransferase, peripherin, calcitonin gene-related peptide, and L-14. By comparison, < 10% of the neurons arising on monolayers of other neural cell lines or 3T3 fibroblasts had motor neuron characteristics. Cells derived from dorsal, intermediate, and ventral regions of the spinal cord all behaved similarly and gave rise to motor neuron-like cells when plated onto Ast-1. By using cells that expressed the lacZ reporter gene, it was shown that > 93% of cells present on the Ast-1 monolayers were motor neuron-like. Time-lapse analysis revealed that the precursors on the Ast-1 monolayers gave rise to neurons either directly or following a single cell division. Together, these results indicate that precursors in the murine spinal cord can be induced to differentiate into the motor neuron phenotype by factors produced by Ast-1 cells, suggesting that a similar factor(s) produced by cells akin to Ast-1 may regulate motor neuron differentiation in vivo.