5 resultados para Ast-E15

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deficiency of blood coagulation factor V or tissue factor causes the death of mouse embryos by 10.5 days of gestation, suggesting that part of the blood coagulation system is necessary for development. This function is proposed to require either generation of the serine protease thrombin and cell signaling through protease-activated receptors or an activity of tissue factor that is distinct from blood clotting. We find that murine deficiency of prothrombin clotting factor 2 (Cf2) was associated with the death of approximately 50% of Cf2−/− embryos by embryonic day 10.5 (E10.5), and surviving embryos had characteristic defects in yolk sac vasculature. Most of the remaining Cf2−/− embryos died by E15.5, but those surviving to E18.5 appeared normal. The rare Cf2−/− neonates died of hemorrhage on the first postnatal day. These studies suggest that a part of the blood coagulation system is adapted to perform a developmental function. Other mouse models show that the absence of platelets or of fibrinogen does not cause fetal wastage. Therefore, the role of thrombin in development may be independent of its effects on blood coagulation and instead may involve signal transduction on cells other than platelets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using in situ hybridization and immunohistochemistry the expression of, respectively, prepro-galanin (prepro-GAL) mRNA and GAL receptor-1 mRNA, as well as GAL-like and GAL message-associated peptide-like immunoreactivities, were studied in rats from embryonic day 14 (E14) to postnatal day 1. GAL expression was observed already at E14 in trigeminal and dorsal root ganglion neurons and at E15 in the sensory epithelia in developing ear, eye, and nose, as well as at E19 during bone formation. Also, GAL receptor-1 mRNA was expressed in the sensory ganglia of embryos but appeared later than the ligand. These findings suggest that GAL and/or GAL message-associated peptide may have a developmental role in several sensory systems and during bone formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three different base paired stems form between U2 and U6 snRNA over the course of the mRNA splicing reaction (helices I, II and III). One possible function of U2/U6 helix II is to facilitate subsequent U2/U6 helix I and III interactions, which participate directly in catalysis. Using an in vitro trans-splicing assay, we investigated the function of sequences located just upstream from the branch site (BS). We find that these upstream sequences are essential for stable binding of U2 to the branch region, and for U2/U6 helix II formation, but not for initial U2/BS pairing. We also show that non-functional upstream sequences cause U2 snRNA stem–loop IIa to be exposed to dimethylsulfate modification, perhaps reflecting a U2 snRNA conformational change and/or loss of SF3b proteins. Our data suggest that initial binding of U2 snRNP to the BS region must be stabilized by an interaction with upstream sequences before U2/U6 helix II can form or U2 stem–loop IIa can participate in spliceosome assembly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expression of human keratinocyte growth factor (KGF/FGF-7) was directed to epithelial cells of the developing embryonic lung of transgenic mice disrupting normal pulmonary morphogenesis during the pseudoglandular stage of development. By embryonic day 15.5(E15.5), lungs of transgenic surfactant protein C (SP-C)-KGF mice resembled those of humans with pulmonary cystadenoma. Lungs were cystic, filling the thoracic cavity, and were composed of numerous dilated saccules lined with glycogen-containing columnar epithelial cells. The normal distribution of SP-C proprotein in the distal regions of respiratory tubules was disrupted. Columnar epithelial cells lining the papillary structures stained variably and weakly for this distal respiratory cell marker. Mesenchymal components were preserved in the transgenic mouse lungs, yet the architectural relationship of the epithelium to the mesenchyme was altered. SP-C-KGF transgenic mice failed to survive gestation to term, dying before E17.5. Culturing mouse fetal lung explants in the presence of recombinant human KGF also disrupted branching morphogenesis and resulted in similar cystic malformation of the lung. Thus, it appears that precise temporal and spatial expression of KGF is likely to play a crucial role in the control of branching morphogenesis during fetal lung development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the differentiation potential of precursor cells within the developing spinal cord of mice and have shown that spinal cord cells from embryonic day 10 specifically give rise to neurons when plated onto an astrocytic monolayer, Ast-1. These neurons had the morphology of motor neurons and > 83% expressed the motor neuron markers choline acetyltransferase, peripherin, calcitonin gene-related peptide, and L-14. By comparison, < 10% of the neurons arising on monolayers of other neural cell lines or 3T3 fibroblasts had motor neuron characteristics. Cells derived from dorsal, intermediate, and ventral regions of the spinal cord all behaved similarly and gave rise to motor neuron-like cells when plated onto Ast-1. By using cells that expressed the lacZ reporter gene, it was shown that > 93% of cells present on the Ast-1 monolayers were motor neuron-like. Time-lapse analysis revealed that the precursors on the Ast-1 monolayers gave rise to neurons either directly or following a single cell division. Together, these results indicate that precursors in the murine spinal cord can be induced to differentiate into the motor neuron phenotype by factors produced by Ast-1 cells, suggesting that a similar factor(s) produced by cells akin to Ast-1 may regulate motor neuron differentiation in vivo.