15 resultados para Aspergillus clavatus
em National Center for Biotechnology Information - NCBI
Resumo:
Some group I introns self-splice in vitro, but almost all are thought to be assisted by proteins in vivo. Mutational analysis has shown that the splicing of certain group I introns depends upon a maturase protein encoded by the intron itself. However the effect of a protein on splicing can be indirect. We now provide evidence that a mitochondrial intron-encoded protein from Aspergillus nidulans directly facilitates splicing in vitro. This demonstrates that a maturase is an RNA splicing protein. The protein-assisted reaction is as fast as that of any other known group I intron. Interestingly the protein is also a DNA endonuclease, an activity required for intron mobilization. Mobile elements frequently encode proteins that promote their propagation. Intron-encoded proteins that also assist RNA splicing would facilitate both the transposition and horizontal transmission of introns.
Resumo:
High-resolution video microscopy, image analysis, and computer simulation were used to study the role of the Spitzenkörper (Spk) in apical branching of ramosa-1, a temperature-sensitive mutant of Aspergillus niger. A shift to the restrictive temperature led to a cytoplasmic contraction that destabilized the Spk, causing its disappearance. After a short transition period, new Spk appeared where the two incipient apical branches emerged. Changes in cell shape, growth rate, and Spk position were recorded and transferred to the fungus simulator program to test the hypothesis that the Spk functions as a vesicle supply center (VSC). The simulation faithfully duplicated the elongation of the main hypha and the two apical branches. Elongating hyphae exhibited the growth pattern described by the hyphoid equation. During the transition phase, when no Spk was visible, the growth pattern was nonhyphoid, with consecutive periods of isometric and asymmetric expansion; the apex became enlarged and blunt before the apical branches emerged. Video microscopy images suggested that the branch Spk were formed anew by gradual condensation of vesicle clouds. Simulation exercises where the VSC was split into two new VSCs failed to produce realistic shapes, thus supporting the notion that the branch Spk did not originate by division of the original Spk. The best computer simulation of apical branching morphogenesis included simulations of the ontogeny of branch Spk via condensation of vesicle clouds. This study supports the hypothesis that the Spk plays a major role in hyphal morphogenesis by operating as a VSC—i.e., by regulating the traffic of wall-building vesicles in the manner predicted by the hyphoid model.
Resumo:
A physical map of the 31-megabase Aspergillus nidulans genome is reported, in which 94% of 5,134 cosmids are assigned to 49 contiguous segments. The physical map is the result of a two-way ordering process, in which clones and probes were ordered simultaneously on a binary DNA/DNA hybridization matrix. Compression by elimination of redundant clones resulted in a minimal map, which is a chromosome walk. Repetitive DNA is nonrandomly dispersed in the A. nidulans genome, reminiscent of heterochromatic banding patterns of higher eukaryotes. We hypothesize gene clusters may arise by horizontal transfer and spread by transposition to explain the nonrandom pattern of repeats along chromosomes.
Resumo:
The G2 DNA damage and slowing of S-phase checkpoints over mitosis function through tyrosine phosphorylation of NIMXcdc2 in Aspergillus nidulans. We demonstrate that breaking these checkpoints leads to a defective premature mitosis followed by dramatic rereplication of genomic DNA. Two additional checkpoint functions, uvsB and uvsD, also cause the rereplication phenotype after their mutation allows premature mitosis in the presence of low concentrations of hydroxyurea. uvsB is shown to encode a rad3/ATR homologue, whereas uvsD displays homology to rad26, which has only previously been identified in Schizosaccharomyces pombe. uvsBrad3 and uvsDrad26 have G2 checkpoint functions over mitosis and another function essential for surviving DNA damage. The rereplication phenotype is accompanied by lack of NIMEcyclinB, but ectopic expression of active nondegradable NIMEcyclinB does not arrest DNA rereplication. DNA rereplication can also be induced in cells that enter mitosis prematurely because of lack of tyrosine phosphorylation of NIMXcdc2 and impaired anaphase-promoting complex function. The data demonstrate that lack of checkpoint control over mitosis can secondarily cause defects in the checkpoint system that prevents DNA rereplication in the absence of mitosis. This defines a new mechanism by which endoreplication of DNA can be triggered and maintained in eukaryotic cells.
Resumo:
Aspergillus nidulans contains two functionally distinct fatty acid synthases (FASs): one required for primary fatty acid metabolism (FAS) and the other required for secondary metabolism (sFAS). FAS mutants require long-chain fatty acids for growth, whereas sFAS mutants grow normally but cannot synthesize sterigmatocystin (ST), a carcinogenic secondary metabolite structurally and biosynthetically related to aflatoxin. sFAS mutants regain the ability to synthesize ST when provided with hexanoic acid, supporting the model that the ST polyketide synthase uses this short-chain fatty acid as a starter unit. The characterization of both the polyketide synthase and FAS may provide novel means for modifying secondary metabolites.
Resumo:
The four major oligomeric reaction products from saponified modified hairy regions (MHR-S) from apple, produced by recombinant rhamnogalacturonan (RG) α-l-rhamnopyranosyl-(1,4)-α-d-galactopyranosyluronide lyase (rRG-lyase) from Aspergillus aculeatus, were isolated and characterized by 1H-nuclear magnetic resonance spectroscopy. They contain an alternating RG backbone with a degree of polymerization of 4, 6, 8, and 10 and with an α-Δ-(4,5)-unsaturated d-galactopyranosyluronic acid at the nonreducing end and an l-rhamnopyranose at the reducing end. l-Rhamnopyranose units are substituted at C-4 with β-galactose. The maximum reaction rate of rRG-lyase toward MHR-S at pH 6.0 and 31°C was 28 units mg−1. rRG-lyase and RG-hydrolase cleave the same alternating RG I subunit in MHR. Both of these enzymes fragment MHR by a multiple attack mechanism. The catalytic efficiency of rRG-lyase for MHR increases with decreasing degree of acetylation. Removal of arabinose side chains improves the action of rRG-lyase toward MHR-S. In contrast, removal of galactose side chains decreased the catalytic efficiency of rRG-lyase. Native RG-lyase was purified from A. aculeatus, characterized, and found to be similar to the rRG-lyase expressed in Aspergillus oryzae.
Resumo:
The three-dimensional structure of Aspergillus niger pectin lyase B (PLB) has been determined by crystallographic techniques at a resolution of 1.7 Å. The model, with all 359 amino acids and 339 water molecules, refines to a final crystallographic R factor of 16.5%. The polypeptide backbone folds into a large right-handed cylinder, termed a parallel β helix. Loops of various sizes and conformations protrude from the central helix and probably confer function. The largest loop of 53 residues folds into a small domain consisting of three antiparallel β strands, one turn of an α helix, and one turn of a 310 helix. By comparison with the structure of Erwinia chrysanthemi pectate lyase C (PelC), the primary sequence alignment between the pectate and pectin lyase subfamilies has been corrected and the active site region for the pectin lyases deduced. The substrate-binding site in PLB is considerably less hydrophilic than the comparable PelC region and consists of an extensive network of highly conserved Trp and His residues. The PLB structure provides an atomic explanation for the lack of a catalytic requirement for Ca2+ in the pectin lyase family, in contrast to that found in the pectate lyase enzymes. Surprisingly, however, the PLB site analogous to the Ca2+ site in PelC is filled with a positive charge provided by a conserved Arg in the pectin lyases. The significance of the finding with regard to the enzymatic mechanism is discussed.
Resumo:
Sterigmatocystin (ST) and the aflatoxins (AFs), related fungal secondary metabolites, are among the most toxic, mutagenic, and carcinogenic natural products known. The ST biosynthetic pathway in Aspergillus nidulans is estimated to involve at least 15 enzymatic activities, while certain Aspergillus parasiticus, Aspergillus flavus, and Aspergillus nomius strains contain additional activities that convert ST to AF. We have characterized a 60-kb region in the A. nidulans genome and find it contains many, if not all, of the genes needed for ST biosynthesis. This region includes verA, a structural gene previously shown to be required for ST biosynthesis, and 24 additional closely spaced transcripts ranging in size from 0.6 to 7.2 kb that are coordinately induced only under ST-producing conditions. Each end of this gene cluster is demarcated by transcripts that are expressed under both ST-inducing and non-ST-inducing conditions. Deduced polypeptide sequences of regions within this cluster had a high percentage of identity with enzymes that have activities predicted for ST/AF biosynthesis, including a polyketide synthase, a fatty acid synthase (alpha and beta subunits), five monooxygenases, four dehydrogenases, an esterase, an 0-methyltransferase, a reductase, an oxidase, and a zinc cluster DNA binding protein. A revised system for naming the genes of the ST pathway is presented.
Resumo:
Migration of nuclei throughout the mycelium is essential for the growth and differentiation of filamentous fungi. In Aspergillus nidulans, the nudA gene, which is involved in nuclear migration, encodes a cytoplasmic dynein heavy chain. In this paper we use antibodies to characterize the Aspergillus cytoplasmic dynein heavy chain (ACDHC) and to show that the ACDHC is concentrated at the growing tip of the fungal mycelium. We demonstrate that four temperature-sensitive mutations in the nudA gene result in a striking decrease in ACDHC protein. Cytoplasmic dynein has been implicated in nuclear division in animal cells. Because the temperature-sensitive nudA mutants are able to grow slowly with occasional nuclei found in the mycelium and are able to undergo nuclear division, we have created a deletion/disruption nudA mutation and a tightly downregulated nudA mutation. These mutants exhibit a phenotype very similar to that of the temperature-sensitive nudA mutants with respect to growth, nuclear distribution, and nuclear division. This suggests that there are redundant backup motor proteins for both nuclear migration and nuclear division.
Resumo:
Telomeres are essential for preserving chromosome integrity during the cell cycle and have been specifically implicated in mitotic progression, but little is known about the signaling molecule(s) involved. The human telomeric repeat binding factor protein (TRF1) is shown to be important in regulating telomere length. However, nothing is known about its function and regulation during the cell cycle. The sequence of PIN2, one of three human genes (PIN1-3) we previously cloned whose products interact with the Aspergillus NIMA cell cycle regulatory protein kinase, reveals that it encodes a protein that is identical in sequence to TRF1 apart from an internal deletion of 20 amino acids; Pin2 and TRF1 may be derived from the same gene, PIN2/TRF1. However, in the cell Pin2 was found to be the major expressed product and to form homo- and heterodimers with TRF1; both dimers were localized at telomeres. Pin2 directly bound the human telomeric repeat DNA in vitro, and was localized to all telomeres uniformly in telomerase-positive cells. In contrast, in several cell lines that contain barely detectable telomerase activity, Pin2 was highly concentrated at only a few telomeres. Interestingly, the protein level of Pin2 was highly regulated during the cell cycle, being strikingly increased in G2+M and decreased in G1 cells. Moreover, overexpression of Pin2 resulted in an accumulation of HeLa cells in G2+M. These results indicate that Pin2 is the major human telomeric protein and is highly regulated during the cell cycle, with a possible role in mitosis. The results also suggest that Pin2/TRF1 may connect mitotic control to the telomere regulatory machinery whose deregulation has been implicated in cancer and aging.
Resumo:
BIMD of Aspergillus nidulans belongs to a highly conserved protein family implicated, in filamentous fungi, in sister-chromatid cohesion and DNA repair. We show here that BIMD is chromosome associated at all stages, except from late prophase through anaphase, during mitosis and meiosis, and is involved in several aspects of both programs. First, bimD+ function must be executed during S through M. Second, in bimD6 germlings, mitotic nuclear divisions and overall cellular program occur more rapidly than in wild type. Thus, BIMD, an abundant chromosomal protein, is a negative regulator of normal cell cycle progression. Third, bimD6 reduces the level of mitotic interhomolog recombination but does not alter the ratio between crossover and noncrossover outcomes. Moreover, bimD6 is normal for intrachromosomal recombination. Therefore, BIMD is probably not involved in the enzymology of recombinational repair per se. Finally, during meiosis, staining of the Sordaria ortholog Spo76p delineates robust chromosomal axes, whereas BIMD stains all chromatin. SPO76 and bimD are functional homologs with respect to their roles in mitotic chromosome metabolism but not in meiosis. We propose that BIMD exerts its diverse influences on cell cycle progression as well as chromosome morphogenesis and recombination by modulating chromosome structure.
Resumo:
Ripening-associated pectin disassembly in melon is characterized by a decrease in molecular mass and an increase in the solubilization of polyuronide, modifications that in other fruit have been attributed to the activity of polygalacturonase (PG). Although it has been reported that PG activity is absent during melon fruit ripening, a mechanism for PG-independent pectin disassembly has not been positively identified. Here we provide evidence that pectin disassembly in melon (Cucumis melo) may be PG mediated. Three melon cDNA clones with significant homology to other cloned PGs were isolated from the rapidly ripening cultivar Charentais (C. melo cv Reticulatus F1 Alpha) and were expressed at high levels during fruit ripening. The expression pattern correlated temporally with an increase in pectin-degrading activity and a decrease in the molecular mass of cell wall pectins, suggesting that these genes encode functional PGs. MPG1 and MPG2 were closely related to peach fruit and tomato abscission zone PGs, and MPG3 was closely related to tomato fruit PG. MPG1, the most abundant melon PG mRNA, was expressed in Aspergillus oryzae. The culture filtrate exponentially decreased the viscosity of a pectin solution and catalyzed the linear release of reducing groups, suggesting that MPG1 encodes an endo-PG with the potential to depolymerize melon fruit cell wall pectin. Because MPG1 belongs to a group of PGs divergent from the well-characterized tomato fruit PG, this supports the involvement of a second class of PGs in fruit ripening-associated pectin disassembly.
Resumo:
A new enzyme, rhamnogalacturonan (RG) α-d-galactopyranosyluronohydrolase (RG-galacturonohydrolase), able to release a galacturonic acid residue from the nonreducing end of RG chains but not from homogalacturonan, was purified from an Aspergillus aculeatus enzyme preparation. RG-galacturonohydrolase acted with inversion of anomeric configuration, initially releasing β-d-galactopyranosyluronic acid. The enzyme cleaved smaller RG substrates with the highest catalytic efficiency. A Michaelis constant of 85 μm and a maximum reaction rate of 160 units mg−1 was found toward a linear RG fragment with a degree of polymerization of 6. RG-galacturonohydrolase had a molecular mass of 66 kD, an isoelectric point of 5.12, a pH optimum of 4.0, and a temperature optimum of 50°C. The enzyme was most stable between pH 3.0 and 6.0 (for 24 h at 40°C) and up to 60°C (for 3 h).
Resumo:
Using the yeast two-hybrid system we have identified a human protein, GAIP (G Alpha Interacting Protein), that specifically interacts with the heterotrimeric GTP-binding protein G alpha i3. Interaction was verified by specific binding of in vitro-translated G alpha i3 with a GAIP-glutathione S-transferase fusion protein. GAIP is a small protein (217 amino acids, 24 kDa) that contains two potential phosphorylation sites for protein kinase C and seven for casein kinase 2. GAIP shows high homology to two previously identified human proteins, GOS8 and 1R20, two Caenorhabditis elegans proteins, CO5B5.7 and C29H12.3, and the FLBA gene product in Aspergillus nidulans--all of unknown function. Significant homology was also found to the SST2 gene product in Saccharomyces cerevisiae that is known to interact with a yeast G alpha subunit (Gpa1). A highly conserved core domain of 125 amino acids characterizes this family of proteins. Analysis of deletion mutants demonstrated that the core domain is the site of GAIP's interaction with G alpha i3. GAIP is likely to be an early inducible phosphoprotein, as its cDNA contains the TTTTGT sequence characteristic of early response genes in its 3'-untranslated region. By Northern analysis GAIP's 1.6-kb mRNA is most abundant in lung, heart, placenta, and liver and is very low in brain, skeletal muscle, pancreas, and kidney. GAIP appears to interact exclusively with G alpha i3, as it did not interact with G alpha i2 and G alpha q. The fact that GAIP and Sst2 interact with G alpha subunits and share a common domain suggests that other members of the GAIP family also interact with G alpha subunits through the 125-amino-acid core domain.
Resumo:
Type I hereditary tyrosinaemia (HT1) is a severe human inborn disease resulting from loss of fumaryl-acetoacetate hydrolase (Fah). Homozygous disruption of the gene encoding Fah in mice causes neonatal lethality, seriously limiting use of this animal as a model. We report here that fahA, the gene encoding Fah in the fungus Aspergillus nidulans, encodes a polypeptide showing 47.1% identity to its human homologue, fahA disruption results in secretion of succinylacetone (a diagnostic compound for human type I tyrosinaemia) and phenylalanine toxicity. We have isolated spontaneous suppressor mutations preventing this toxicity, presumably representing loss-of-function mutations in genes acting upstream of fahA in the phenylalanine catabolic pathway. Analysis of a class of these mutations demonstrates that loss of homogentisate dioxygenase (leading to alkaptonuria in humans) prevents the effects of a Fah deficiency. Our results strongly suggest human homogentisate dioxygenase as a target for HT1 therapy and illustrate the usefulness of this fungus as an alternative to animal models for certain aspects of human metabolic diseases.