34 resultados para Ascertainment Bias Hypothesis
em National Center for Biotechnology Information - NCBI
Resumo:
We first review what is known about patterns of codon usage bias in Drosophila and make the following points: (i) Drosophila genes are as biased or more biased than those in microorganisms. (ii) The level of bias of genes and even the particular pattern of codon bias can remain phylogenetically invariant for very long periods of evolution. (iii) However, some genes, even very tightly linked genes, can change very greatly in codon bias across species. (iv) Generally G and especially C are favored at synonymous sites in biased genes. (v) With the exception of aspartic acid, all amino acids contribute significantly and about equally to the codon usage bias of a gene. (vi) While most individual amino acids that can use G or C at synonymous sites display a preference for C, there are exceptions: valine and leucine, which prefer G. (vii) Finally, smaller genes tend to be more biased than longer genes. We then examine possible causes of these patterns and discount mutation bias on three bases: there is little evidence of regional mutation bias in Drosophila, mutation bias is likely toward A+T (the opposite of codon usage bias), and not all amino acids display the preference for the same nucleotide in the wobble position. Two lines of evidence support a selection hypothesis based on tRNA pools: highly biased genes tend to be highly and/or rapidly expressed, and the preferred codons in highly biased genes optimally bind the most abundant isoaccepting tRNAs. Finally, we examine the effect of bias on DNA evolution and confirm that genes with high codon usage bias have lower rates of synonymous substitution between species than do genes with low codon usage bias. Surprisingly, we find that genes with higher codon usage bias display higher levels of intraspecific synonymous polymorphism. This may be due to opposing effects of recombination.
Resumo:
In this paper we determine the extent to which host-mediated mutations and a known sampling bias affect evolutionary studies of human influenza A. Previous phylogenetic reconstruction of influenza A (H3N2) evolution using the hemagglutinin gene revealed an excess of nonsilent substitutions assigned to the terminal branches of the tree. We investigate two hypotheses to explain this observation. The first hypothesis is that the excess reflects mutations that were either not present or were at low frequency in the viral sample isolated from its human host, and that these mutations increased in frequency during passage of the virus in embryonated eggs. A set of 22 codons known to undergo such “host-mediated” mutations showed a significant excess of mutations assigned to branches attaching sequences from egg-cultured (as opposed to cell-cultured) isolates to the tree. Our second hypothesis is that the remaining excess results from sampling bias. Influenza surveillance is purposefully biased toward sequencing antigenically dissimilar strains in an effort to identify new variants that may signal the need to update the vaccine. This bias produces an excess of mutations assigned to terminal branches simply because an isolate with no close relatives is by definition attached to the tree by a relatively long branch. Simulations show that the magnitude of excess mutations we observed in the hemagglutinin tree is consistent with expectations based on our sampling protocol. Sampling bias does not affect inferences about evolution drawn from phylogenetic analyses. However, if possible, the excess caused by host-mediated mutations should be removed from studies of the evolution of influenza viruses as they replicate in their human hosts.
Resumo:
Increasingly, studies of genes and genomes are indicating that considerable horizontal transfer has occurred between prokaryotes. Extensive horizontal transfer has occurred for operational genes (those involved in housekeeping), whereas informational genes (those involved in transcription, translation, and related processes) are seldomly horizontally transferred. Through phylogenetic analysis of six complete prokaryotic genomes and the identification of 312 sets of orthologous genes present in all six genomes, we tested two theories describing the temporal flow of horizontal transfer. We show that operational genes have been horizontally transferred continuously since the divergence of the prokaryotes, rather than having been exchanged in one, or a few, massive events that occurred early in the evolution of prokaryotes. In agreement with earlier studies, we found that differences in rates of evolution between operational and informational genes are minimal, suggesting that factors other than rate of evolution are responsible for the observed differences in horizontal transfer. We propose that a major factor in the more frequent horizontal transfer of operational genes is that informational genes are typically members of large, complex systems, whereas operational genes are not, thereby making horizontal transfer of informational gene products less probable (the complexity hypothesis).
Resumo:
Swordtail fish (Poeciliidae: genus Xiphophorus) are a paradigmatic case of sexual selection by sensory exploitation. Female preference for males with a conspicuous “sword” ornament is ancestral, suggesting that male morphology has evolved in response to a preexisting bias. The perceptual mechanisms underlying female mate choice have not been identified, complicating efforts to understand the selection pressures acting on ornament design. We consider two alternative models of receiver behavior, each consistent with previous results. Females could respond either to specific characteristics of the sword or to more general cues, such as the apparent size of potential mates. We showed female swordtails a series of computer-altered video sequences depicting a courting male. Footage of an intact male was preferred strongly to otherwise identical sequences in which portions of the sword had been deleted selectively, but a disembodied courting sword was less attractive than an intact male. There was no difference between responses to an isolated sword and to a swordless male of comparable length, or between an isolated sword and a homogenous background. Female preference for a sworded male was abolished by enlarging the image of a swordless male to compensate for the reduction in length caused by removing the ornament. This pattern of results is consistent with mate choice being mediated by a general preference for large males rather than by specific characters. Similar processes may account for the evolution of exaggerated traits in other systems.
Resumo:
Our recent demonstration that many eukaryotic mRNAs contain sequences complementary to rRNA led to the hypothesis that these sequences might mediate specific interactions between mRNAs and ribosomes and thereby affect translation. In the present experiments, the ability of complementary sequences to bind to rRNA was investigated by using photochemical cross-linking. RNA probes with perfect complementarity to 18S or 28S rRNA were shown to cross-link specifically to the corresponding rRNA within intact ribosomal subunits. Similar results were obtained by using probes based on natural mRNA sequences with varying degrees of complementarity to the 18S rRNA. RNase H cleavage localized four such probes to complementary regions of the 18S rRNA. The effects of complementarity on translation were assessed by using the mRNA encoding ribosomal protein S15. This mRNA contains a sequence within its coding region that is complementary to the 18S rRNA at 20 of 22 nucleotides. RNA from an S15-luciferase fusion construct was translated in a cell-free lysate and compared with the translation of four related constructs that were mutated to decrease complementarity to the 18S rRNA. These mutations did not alter the amino acid sequence or the codon bias. A correlation between complementarity and translation was observed; constructs with less complementarity increased the amount of translation up to 54%. These findings raised the possibility that direct base-pairing of particular mRNAs to rRNAs within ribosomes may function as a mechanism of translational control.
Resumo:
Molecular studies have the potential to shed light on the origin of the animal phyla by providing independent estimates of the divergence times, but have been criticized for failing to account adequately for variation in rate of evolution. A method of dating divergence times from molecular data addresses the criticisms of earlier studies and provides more realistic, but wider, confidence intervals. The data are not compatible with the Cambrian explosion hypothesis as an explanation for the origin of metazoan phyla, and provide additional support for an extended period of Precambrian metazoan diversification.
Resumo:
A Ca2+-dependent synaptic vesicle-recycling pathway emanating from the plasma membrane adjacent to the dense body at the active zone has been demonstrated by blocking pinch-off of recycling membrane by using the Drosophila mutant, shibire. Exposure of wild-type Drosophila synapses to low Ca2+/high Mg2+ saline is shown here to block this active zone recycling pathway at the stage in which invaginations of the plasma membrane develop adjacent to the dense body. These observations, in combination with our previous demonstration that exposure to high Ca2+ causes “docked” vesicles to accumulate in the identical location where active zone endocytosis occurs, suggest the possibility that a vesicle-recycling pathway emanating from the active zone may exist that is stimulated by exposure to elevated Ca2+, thereby causing an increase in vesicle recycling, and is suppressed by exposure to low Ca2+ saline, thereby blocking newly forming vesicles at the invagination stage. The presence of a Ca2+-dependent endocytotic pathway at the active zone opens up the following possibilities: (i) electron microscopic omega-shaped images (and their equivalent, freeze fracture dimples) observed at the active zone adjacent to the dense body could represent endocytotic images (newly forming vesicles) rather than exocytotic images; (ii) vesicles observed attached to the plasma membrane adjacent to the dense body could represent newly formed vesicles rather than vesicles “docked” for release of transmitter.
Resumo:
Recombination of genes is essential to the evolution of genetic diversity, the segregation of chromosomes during cell division, and certain DNA repair processes. The Holliday junction, a four-arm, four-strand branched DNA crossover structure, is formed as a transient intermediate during genetic recombination and repair processes in the cell. The recognition and subsequent resolution of Holliday junctions into parental or recombined products appear to be critically dependent on their three-dimensional structure. Complementary NMR and time-resolved fluorescence resonance energy transfer experiments on immobilized four-arm DNA junctions reported here indicate that the Holliday junction cannot be viewed as a static structure but rather as an equilibrium mixture of two conformational isomers. Furthermore, the distribution between the two possible crossover isomers was found to depend on the sequence in a manner that was not anticipated on the basis of previous low-resolution experiments.
Resumo:
A cross-maze task that can be acquired through either place or response learning was used to examine the hypothesis that posttraining neurochemical manipulation of the hippocampus or caudate-putamen can bias an animal toward the use of a specific memory system. Male Long-Evans rats received four trials per day for 7 days, a probe trial on day 8, further training on days 9–15, and an additional probe trial on day 16. Training occurred in a cross-maze task in which rats started from a consistent start-box (south), and obtained food from a consistent goal-arm (west). On days 4–6 of training, rats received posttraining intrahippocampal (1 μg/0.5 μl) or intracaudate (2 μg/0.5 μl) injections of either glutamate or saline (0.5 μl). On days 8 and 16, a probe trial was given in which rats were placed in a novel start-box (north). Rats selecting the west goal-arm were designated “place” learners, and those selecting the east goal-arm were designated “response” learners. Saline-treated rats predominantly displayed place learning on day 8 and response learning on day 16, indicating a shift in control of learned behavior with extended training. Rats receiving intrahippocampal injections of glutamate predominantly displayed place learning on days 8 and 16, indicating that manipulation of the hippocampus produced a blockade of the shift to response learning. Rats receiving intracaudate injections of glutamate displayed response learning on days 8 and 16, indicating an accelerated shift to response learning. The findings suggest that posttraining intracerebral glutamate infusions can (i) modulate the distinct memory processes mediated by the hippocampus and caudate-putamen and (ii) bias the brain toward the use of a specific memory system to control learned behavior and thereby influence the timing of the switch from the use of cognitive memory to habit learning to guide behavior.
Resumo:
The psbA gene of the chloroplast genome has a codon usage that is unusual for plant chloroplast genes. In the present study the evolutionary status of this codon usage is tested by reconstructing putative ancestral psbA sequences to determine the pattern of change in codon bias during angiosperm divergence. It is shown that the codon biases of the ancestral genes are much stronger than all extant flowering plant psbA genes. This is related to previous work that demonstrated a significant increase in synonymous substitution in psbA relative to other chloroplast genes. It is suggested, based on the two lines of evidence, that the codon bias of this gene currently is not being maintained by selection. Rather, the atypical codon bias simply may be a remnant of an ancestral codon bias that now is being degraded by the mutation bias of the chloroplast genome, in other words, that the psbA gene is not at equilibrium. A model for the evolution of selective pressure on the codon usage of plant chloroplast genes is discussed.
Resumo:
Three novel families of transposable elements, Wukong, Wujin, and Wuneng, are described in the yellow fever mosquito, Aedes aegypti. Their copy numbers range from 2,100 to 3,000 per haploid genome. There are high degrees of sequence similarity within each family, and many structural but not sequence similarities between families. The common structural characteristics include small size, no coding potential, terminal inverted repeats, potential to form a stable secondary structure, A+T richness, and putative 2- to 4-bp A+T-biased specific target sites. Evidence of previous mobility is presented for the Wukong elements. Elements of these three families are associated with 7 of 16 fully or partially sequenced Ae. aegypti genes. Characteristics of these mosquito elements indicate strong similarities to the miniature inverted-repeat transposable elements (MITEs) recently found to be associated with plant genes. MITE-like elements have also been reported in two species of Xenopus and in Homo sapiens. This characterization of multiple families of highly repetitive MITE-like elements in an invertebrate extends the range of these elements in eukaryotic genomes. A hypothesis is presented relating genome size and organization to the presence of highly reiterated MITE families. The association of MITE-like elements with Ae. aegypti genes shows the same bias toward noncoding regions as in plants. This association has potentially important implications for the evolution of gene regulation.
Resumo:
This paper decomposes the conventional measure of selection bias in observational studies into three components. The first two components are due to differences in the distributions of characteristics between participant and nonparticipant (comparison) group members: the first arises from differences in the supports, and the second from differences in densities over the region of common support. The third component arises from selection bias precisely defined. Using data from a recent social experiment, we find that the component due to selection bias, precisely defined, is smaller than the first two components. However, selection bias still represents a substantial fraction of the experimental impact estimate. The empirical performance of matching methods of program evaluation is also examined. We find that matching based on the propensity score eliminates some but not all of the measured selection bias, with the remaining bias still a substantial fraction of the estimated impact. We find that the support of the distribution of propensity scores for the comparison group is typically only a small portion of the support for the participant group. For values outside the common support, it is impossible to reliably estimate the effect of program participation using matching methods. If the impact of participation depends on the propensity score, as we find in our data, the failure of the common support condition severely limits matching compared with random assignment as an evaluation estimator.
Resumo:
Widespread interest in producing transgenic organisms is balanced by concern over ecological hazards, such as species extinction if such organisms were to be released into nature. An ecological risk associated with the introduction of a transgenic organism is that the transgene, though rare, can spread in a natural population. An increase in transgene frequency is often assumed to be unlikely because transgenic organisms typically have some viability disadvantage. Reduced viability is assumed to be common because transgenic individuals are best viewed as macromutants that lack any history of selection that could reduce negative fitness effects. However, these arguments ignore the potential advantageous effects of transgenes on some aspect of fitness such as mating success. Here, we examine the risk to a natural population after release of a few transgenic individuals when the transgene trait simultaneously increases transgenic male mating success and lowers the viability of transgenic offspring. We obtained relevant life history data by using the small cyprinodont fish, Japanese medaka (Oryzias latipes) as a model. Our deterministic equations predict that a transgene introduced into a natural population by a small number of transgenic fish will spread as a result of enhanced mating advantage, but the reduced viability of offspring will cause eventual local extinction of both populations. Such risks should be evaluated with each new transgenic animal before release.
Resumo:
The onset of X inactivation coincides with accumulation of Xist RNA along the future inactive X chromosome. A recent hypothesis proposed that accumulation is initiated by a promoter switch within Xist. In this hypothesis, an upstream promoter (P0) produces an unstable transcript, while the known downstream promoter (P1) produces a stable RNA. To test this hypothesis, we examined expression and half-life of Xist RNA produced from an Xist transgene lacking P0 but retaining P1. We confirm the previous finding that P0 is dispensable for Xist expression in undifferentiated cells and that P1 can be used in both undifferentiated and differentiated cells. Herein, we show that Xist RNA initiated at P1 is unstable and does not accumulate. Further analysis indicates that the transcriptional boundary at P0 does not represent the 5′ end of a distinct Xist isoform. Instead, P0 is an artifact of cross-amplification caused by a pseudogene of the highly expressed ribosomal protein S12 gene Rps12. Using strand-specific techniques, we find that transcription upstream of P1 originates from the DNA strand opposite Xist and represents the 3′ end of the antisense Tsix RNA. Thus, these data do not support the existence of a P0 promoter and suggest that mechanisms other than switching of functionally distinct promoters control the up-regulation of Xist.