15 resultados para Artificial satellites in navigation.
em National Center for Biotechnology Information - NCBI
Resumo:
Each year more than 250,000 infants in the United States are exposed to artificial lighting in hospital nurseries with little consideration given to environmental lighting cycles. Essential in determining whether environmental lighting cycles need to be considered in hospital nurseries is identifying when the infant’s endogenous circadian clock becomes responsive to light. Using a non-human primate model of the developing human, we examined when the circadian clock, located in the hypothalamic suprachiasmatic nuclei (SCN), becomes responsive to light. Preterm infant baboons of different ages were exposed to light (5,000 lux) at night, and then changes in SCN metabolic activity and gene expression were assessed. After exposure to bright light at night, robust increases in SCN metabolic activity and gene expression were seen at ages that were equivalent to human infants at 24 weeks after conception. These data provide direct evidence that the biological clock of very premature primate infants is responsive to light.
Resumo:
Ablation of tumor colonies was seen in a wide spectrum of human carcinoma cells in culture after treatment with the combination of β-lapachone and taxol, two low molecular mass compounds. They synergistically induced death of cultured ovarian, breast, prostate, melanoma, lung, colon, and pancreatic cancer cells. This synergism is schedule dependent; namely, taxol must be added either simultaneously or after β-lapachone. This combination therapy has unusually potent antitumor activity against human ovarian and prostate tumor prexenografted in mice. There is little host toxicity. Cells can commit to apoptosis at cell-cycle checkpoints, a mechanism that eliminates defective cells to ensure the integrity of the genome. We hypothesize that when cells are treated simultaneously with drugs activating more than one different cell-cycle checkpoint, the production of conflicting regulatory signaling molecules induces apoptosis in cancer cells. β-Lapachone causes cell-cycle delays in late G1 and S phase, and taxol arrests cells at G2/M. Cells treated with both drugs were delayed at multiple checkpoints before committing to apoptosis. Our findings suggest an avenue for developing anticancer therapy by exploiting apoptosis-prone “collisions” at cell-cycle checkpoints.
Resumo:
The α9 acetylcholine receptor (α9 AChR) is specifically expressed in hair cells of the inner ear and is believed to be involved in synaptic transmission between efferent nerves and hair cells. Using a recently developed method, we modified a bacterial artificial chromosome containing the mouse α9 AChR gene with a reporter gene encoding green fluorescent protein (GFP) to generate transgenic mice. GFP expression in transgenic mice recapitulated the known temporal and spatial expression of α9 AChR. However, we observed previously unidentified dynamic changes in α9 AChR expression in cochlear and vestibular sensory epithelia during neonatal development. In the cochlea, inner hair cells persistently expressed high levels of α9 AChR in both the apical and middle turns, whereas both outer and inner hair cells displayed dynamic changes of α9 AChR expression in the basal turn. In the utricle, we observed high levels of α9 AChR expression in the striolar region during early neonatal development and high levels of α9 AChR in the extrastriolar region in adult mice. Further, simultaneous visualization of efferent innervation and α9 AChR expression showed that dynamic expression of α9 AChR in developing hair cells was independent of efferent contacts. We propose that α9 AChR expression in developing auditory and vestibular sensory epithelia correlates with maturation of hair cells and is hair-cell autonomous.
Resumo:
A high-resolution physical and genetic map of a major fruit weight quantitative trait locus (QTL), fw2.2, has been constructed for a region of tomato chromosome 2. Using an F2 nearly isogenic line mapping population (3472 individuals) derived from Lycopersicon esculentum (domesticated tomato) × Lycopersicon pennellii (wild tomato), fw2.2 has been placed near TG91 and TG167, which have an interval distance of 0.13 ± 0.03 centimorgan. The physical distance between TG91 and TG167 was estimated to be ≤ 150 kb by pulsed-field gel electrophoresis of tomato DNA. A physical contig composed of six yeast artificial chromosomes (YACs) and encompassing fw2.2 was isolated. No rearrangements or chimerisms were detected within the YAC contig based on restriction fragment length polymorphism analysis using YAC-end sequences and anchored molecular markers from the high-resolution map. Based on genetic recombination events, fw2.2 could be narrowed down to a region less than 150 kb between molecular markers TG91 and HSF24 and included within two YACs: YAC264 (210 kb) and YAC355 (300 kb). This marks the first time, to our knowledge, that a QTL has been mapped with such precision and delimited to a segment of cloned DNA. The fact that the phenotypic effect of the fw2.2 QTL can be mapped to a small interval suggests that the action of this QTL is likely due to a single gene. The development of the high-resolution genetic map, in combination with the physical YAC contig, suggests that the gene responsible for this QTL and other QTLs in plants can be isolated using a positional cloning strategy. The cloning of fw2.2 will likely lead to a better understanding of the molecular biology of fruit development and to the genetic engineering of fruit size characteristics.
Resumo:
As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes.
Resumo:
Bacterial artificial chromosomes (BACs) and P1 artificial chromosomes (PACs), which contain large fragments of genomic DNA, have been successfully used as transgenes to create mouse models of dose-dependent diseases. They are also potentially valuable as transgenes for dominant diseases given that point mutations and/or small rearrangements can be accurately introduced. Here, we describe a new method to introduce small alterations in BACs, which results in the generation of point mutations with high frequency. The method involves homologous recombination between the original BAC and a shuttle vector providing the mutation. Each recombination step is monitored using positive and negative selection markers, which are the Kanamycin-resistance gene, the sacB gene and temperature-sensitive replication, all conferred by the shuttle plasmid. We have used this method to introduce four different point mutations and the insertion of the β-galactosidase gene in a BAC, which has subsequently been used for transgenic animal production.
Resumo:
We developed a method for the reconstruction of a 100 kb DNA fragment into a bacterial artificial chromosome (BAC). The procedure makes use of iterative rounds of homologous recombination in Escherichia coli. Smaller, overlapping fragments of cloned DNA, such as cosmid clones, are required. They are transferred first into a temperature-sensitive replicon and then into the BAC of choice. We demonstrated the usefulness of this procedure by assembling a 90 kb genomic segment into an E.coli–Streptomyces artificial chromosome (ESAC). Using this procedure, ESACs are easy to handle and remarkably more stable than the starting cosmids.
Resumo:
To analyze the function of the 5' DNase I hypersensitive sites (HSs) of the locus control region (LCR) on beta-like globin gene expression, a 2.3-kb deletion of 5'HS3 or a 1.9-kb deletion of 5'HS2 was recombined into a beta-globin locus yeast artificial chromosome, and transgenic mice were produced. Deletion of 5'HS3 resulted in a significant decrease of epsilon-globin gene expression and an increase of gamma-globin gene expression in embryonic cells. Deletion of 5'HS2 resulted in only a small decrease in expression of epsilon-, gamma-, and beta-globin mRNA at all stages of development. Neither deletion affected the temporal pattern of globin gene switching. These results suggest that the LCR contains functionally redundant elements and that LCR complex formation does not require the presence of all DNase I hypersensitive sites. The phenotype of the 5'HS3 deletion suggests that individual HSs may influence the interaction of the LCR with specific globin gene promoters during the course of ontogeny.
Resumo:
Chédiak-Higashi syndrome in man and the beige mutation of mice are phenotypically similar disorders that have profound effects upon lysosome and melanosome morphology and function. We isolated two murine yeast artificial chromosomes (YACs) that, when introduced into beige mouse fibroblasts, complement the beige mutation. The complementing YACs exist as extrachromosomal elements that are amplified in high concentrations of G418. When YAC-complemented beige cells were fused to human Chédiak-Higashi syndrome or Aleutian mink fibroblasts, complementation of the mutant phenotype also occurred. These results localize the beige gene to a 500-kb interval and demonstrate that the same or homologous genes are defective in mice, minks, and humans.
Resumo:
We describe an integrated approach to large-scale physical mapping using an Alu-PCR hybridization screening strategy in conjunction with direct PCR-based screening to construct a continuous yeast artificial chromosome map covering >20 mb in human chromosome 3, bands p14-p21, composed of 205 loci, connected by 480 yeast artificial chromosomes, with average interlocus distance of approximately equal to 100 kb. We observe an inverse distribution of Alu-PCR and (CA)n markers. These results suggest that the two screening methods may be complementary and demonstrate the utility of Alu-PCR hybridization screening in the closure of high-resolution human physical maps.
Resumo:
The immunoglobulin kappa gene locus encodes 95% of the light chains of murine antibody molecules and is thought to contain up to 300 variable (V kappa)-region genes generally considered to comprise 20 families. To delineate the locus we have isolated 29 yeast artificial chromosome genomic clones that form two contigs, span > 3.5 megabases, and contain two known non-immunoglobulin kappa markers. Using PCR primers specific for 19 V kappa gene families and Southern analysis, we have refined the genetically defined order of these V kappa gene families. Of these, V kappa 2 maps at least 3.0 Mb from the joining (J kappa) region and appears to be the most distal V kappa gene segment.
Resumo:
Plasmids encoding various external guide sequences (EGSs) were constructed and inserted into Escherichia coli. In strains harboring the appropriate plasmids, the expression of fully induced beta-galactosidase and alkaline phosphatase activity was reduced by more than 50%, while no reduction in such activity was observed in strains with non-specific EGSs. The inhibition of gene expression was virtually abolished at restrictive temperatures in strains that were temperature-sensitive for RNase P (EC 3.1.26.5). Northern blot analysis showed that the steady-state copy number of EGS RNAs was several hundred per cell in vivo. A plasmid that contained a gene for M1 RNA covalently linked to a specific EGS reduced the level of expression of a suppressor tRNA that was encoded by a separate plasmid. Similar methods can be used to regulate gene expression in E. coli and to mimic the properties of cold-sensitive mutants.
Resumo:
Lipoprotein(a) [Lp(a)] is a lipoprotein formed by the disulfide linkage of apolipoprotein (apo) B100 of a low density lipoprotein particle to apolipoprotein(a). Prior studies have suggested that one of the C-terminal Cys residues of apo-B100 is involved in the disulfide linkage of apo-B100 to apo(a). To identify the apo-B100 Cys residue involved in the formation of Lp(a), we constructed a yeast artificial chromosome (YAC) spanning the human apo-B gene and used gene-targeting techniques to change Cys-4326 to Gly. The mutated YAC DNA was used to generate transgenic mice expressing the mutant human apo-B100 (Cys4326Gly). Unlike the wild-type human apo-B100, the mutant human apo-B100 completely lacked the ability to bind to apo(a) and form Lp(a). This study demonstrates that apo-B100 Cys-4326 is required for the assembly of Lp(a) and shows that gene targeting in YACs, followed by the generation of transgenic mice, is a useful approach for analyzing the structure of large proteins coded for by large genes.
Resumo:
To test whether yeast artificial chromosomes (YACs) can be used in the investigation of mammalian development, we analyzed the phenotypes of transgenic mice carrying two types of beta-globin locus YAC developmental mutants: (i) mice carrying a G-->A transition at position -117 of the A gamma gene, which is responsible for the Greek A gamma form of hereditary persistence of fetal hemoglobin (HPFH), and (ii) beta-globin locus YAC transgenic lines carrying delta- and beta-globin gene deletions with 5' breakpoints similar to those of deletional HPFH and delta beta-thalassemia syndromes. The mice carrying the -117 A gamma G-->A mutation displayed a delayed gamma- to beta-globin gene switch and continued to express A gamma-globin chains in the adult stage of development as expected for carriers of Greek HPFH, indicating that the YAC/transgenic mouse system allows the analysis of the developmental role of cis-acting motifs. The analysis of mice carrying 3' deletions first provided evidence in support of the hypothesis that imported enhancers are responsible for the phenotypes of deletional HPFH and second indicated that autonomous silencing is the primary mechanism for turning off the gamma-globin genes in the adult. Collectively, our results suggest that transgenic mice carrying YAC mutations provide a useful model for the analysis of the control of gene expression during development.
Resumo:
Fluorescence in situ hybridization (FISH) is a powerful tool for physical mapping in human and other mammalian species. However, application of the FISH technique has been limited in plant species, especially for mapping single- or low-copy DNA sequences, due to inconsistent signal production in plant chromosome preparations. Here we demonstrate that bacterial artificial chromosome (BAC) clones can be mapped readily on rice (Oryza sativa L.) chromosomes by FISH. Repetitive DNA sequences in BAC clones can be suppressed efficiently by using rice genomic DNA as a competitor in the hybridization mixture. BAC clones as small as 40 kb were successfully mapped. To demonstrate the application of the FISH technique in physical mapping of plant genomes, both anonymous BAC clones and clones closely linked to a rice bacterial blight-resistance locus, Xa21, were chosen for analysis. The physical location of Xa21 and the relationships among the linked clones were established, thus demonstrating the utility of FISH in plant genome analysis.