18 resultados para Article 2365 c.c.Q.

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

C-mannosylation of Trp-7 in human ribonuclease 2 (RNase 2) is a novel kind of protein glycosylation that differs fundamentally from N- and O-glycosylation in the protein-sugar linkage. Previously, we established that the specificity determinant of the acceptor substrate (RNase 2) consists of the sequence W-x-x-W, where the first Trp becomes C-mannosylated. Here we investigated the reaction with respect to the mannosyl donor and the involvement of a glycosyltransferase. C-mannosylation of Trp-7 was reduced 10-fold in CHO (Chinese hamster ovary) Lec15 cells, which are deficient in dolichyl-phosphate-mannose (Dol-P-Man) synthase activity, compared with wild-type cells. This was not a result of a decrease in C-mannosyltransferase activity. Rat liver microsomes were used to C-mannosylate the N-terminal dodecapeptide from RNase 2 in vitro, with Dol-P-Man as the donor. This microsomal transferase activity was destroyed by heat and protease treatment, and displayed the same acceptor substrate specificity as the in vivo reaction studied previously. The C-C linkage between the indole and the mannosyl moiety was demonstrated by tandem electrospray mass spectrometry analysis of the product. GDP-Man, in the presence of Dol-P, functioned as a precursor in vitro with membranes from wild-type but not CHO Lec15 cells. In contrast, with Dol-P-Man both membrane preparations were equally active. It is concluded that a microsomal transferase catalyses C-mannosylation of Trp-7, and that the minimal biosynthetic pathway can be defined as: Man –> –> GDP-Man –> Dol-P-Man –> (C2-Man-)Trp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protein p21Cip1, Waf1, Sdi1 is a potent inhibitor of cyclin-dependent kinases (CDKs). p21 can also block DNA replication through its interaction with the proliferating cell nuclear antigen (PCNA), which is an auxiliary factor for polymerase δ. PCNA is also implicated in the repair resynthesis step of nucleotide excision repair (NER). Previous studies have yielded contradictory results on whether p21 regulates NER through its interaction with PCNA. Resolution of this controversy is of interest because it would help understand how DNA repair and replication are regulated. Hence, we have investigated the effect of p21 on NER both in vitro and in vivo using purified fragments of p21 containing either the CDK-binding domain (N terminus) or the PCNA binding domain (C terminus) of the protein. In the in vitro studies, DNA repair synthesis was measured in extracts from normal human fibroblasts using plasmids damaged by UV irradiation. In the in vivo studies, we used intact and permeabilized cells. The results show that the C terminus of the p21 protein inhibits NER both in vitro and in vivo. These are the first in vivo studies in which this question has been examined, and we demonstrate that inhibition of NER by p21 is not merely an artificial in vitro effect. A 50% inhibition of in vitro NER occurred at a 50:1 molar ratio of p21 C-terminus fragment to PCNA monomer. p21 differentially regulates DNA repair and replication, with repair being much less sensitive to inhibition than replication. Our in vivo results suggest that the inhibition occurs at the resynthesis step of the repair process. It also appears that preassembly of PCNA at repair sites mitigates the inhibitory effect of p21. We further demonstrate that the inhibition of DNA repair is mediated via binding of p21 to PCNA. The N terminus of p21 had no effect on DNA repair, and the inhibition of DNA repair by the C terminus of p21 was relieved by the addition of purified PCNA protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although transcription and pre-mRNA processing are colocalized in eukaryotic nuclei, molecules linking these processes have not previously been described. We have identified four novel rat proteins by their ability to interact with the repetitive C-terminal domain (CTD) of RNA polymerase II in a yeast two-hybrid assay. A yeast homolog of one of the rat proteins has also been shown to interact with the CTD. These CTD-binding proteins are all similar to the SR (serine/arginine-rich) family of proteins that have been shown to be involved in constitutive and regulated splicing. In addition to alternating Ser-Arg domains, these proteins each contain discrete N-terminal or C-terminal CTD-binding domains. We have identified SR-related proteins in a complex that can be immunoprecipitated from nuclear extracts with antibodies directed against RNA polymerase II. In addition, in vitro splicing is inhibited either by an antibody directed against the CTD or by wild-type but not mutant CTD peptides. Thus, these results suggest that the CTD and a set of CTD-binding proteins may act to physically and functionally link transcription and pre-mRNA processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone morphogenic protein-1 (BMP-1) was originally identified as one of several BMPs that induced new bone formation when implanted into ectopic sites in rodents. BMP-1, however, differed from other BMPs in that it its structure was not similar to transforming growth factor beta. Instead, it had a large domain homologous to a metalloendopeptidase isolated from crayfish, an epidermal growth-factor-like domain, and three regions of internal sequence homology referred to as CUB domains. Therefore, BMP-1 was a member of the "astacin families" of zinc-requiring endopeptidases. Many astacins have been shown to play critical roles in embryonic hatching, dorsal/ventral patterning, and early developmental decisions. Here, we have obtained amino acid sequences and isolated cDNA clones for procollagen C-proteinase (EC 3.4.24.19), an enzyme that is essential for the processing of procollagens to fibrillar collagens. The results demonstrate that procollagen C-proteinase is identical to BMP-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ubiquitin-dependent proteolysis of the mitotic cyclins A and B is required for the completion of mitosis and entry into the next cell cycle. This process is catalyzed by the cyclosome, an approximately 22S particle that contains a cyclin-selective ubiquitin ligase activity, E3-C, that requires a cyclin-selective ubiquitin carrier protein (UBC) E2-C. Here we report the purification and cloning of E2-C from clam oocytes. The deduced amino acid sequence of E2-C indicates that it is a new UBC family member. Bacterially expressed recombinant E2-C is active in in vitro cyclin ubiquitination assays, where it exhibits the same substrate specificities seen with native E2-C. These results demonstrate that E2-C is not a homolog of UBC4 or UBC9, proteins previously suggested to be involved in cyclin ubiquitination, but is a new UBC family member with unique properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ribonucleolytic activity of angiogenin (Ang) is essential to Ang's capacity to induce blood vessel formation. Previous x-ray diffraction and mutagenesis results have shown that the active site of the human protein is obstructed by Gln-117 and imply that the C-terminal region of Ang must undergo a conformational rearrangement to allow substrate binding and catalysis. As a first step toward structural characterization of this conformational change, additional site-directed mutagenesis and kinetic analysis have been used to examine the intramolecular interactions that stabilize the inactive conformation of the protein. Two residues of this region, Ile-119 and Phe-120, are found to make hydrophobic interactions with the remainder of the protein and thereby help to keep Gln-117 in its obstructive position. Furthermore, the suppression of activity by the intramolecular interactions of Ile-119 and Phe-120 is counterbalanced by an effect of the adjacent residues, Arg-121, Arg-122, and Pro-123 which do not appear to form contacts with the rest of the protein structure. They contribute to enzymatic activity, probably by constituting a peripheral subsite for binding polymeric substrates. The results reveal the nature of the conformational change in human Ang and assign a key role to the C-terminal region both in this process and, presumably, in the regulation of human Ang function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determinants of the recommended dietary allowance (RDA) for vitamin C include the relationship between vitamin C dose and steady-state plasma concentration, bioavailability, urinary excretion, cell concentration, and potential adverse effects. Because current data are inadequate, an in-hospital depletion-repletion study was conducted. Seven healthy volunteers were hospitalized for 4-6 months and consumed a diet containing <5 mg of vitamin C daily. Steady-state plasma and tissue concentrations were determined at seven daily doses of vitamin C from 30 to 2500 mg. Vitamin C steady-state plasma concentrations as a function of dose displayed sigmoid kinetics. The steep portion of the curve occurred between the 30- and 100-mg daily dose, the current RDA of 60 mg daily was on the lower third of the curve, the first dose beyond the sigmoid portion of the curve was 200 mg daily, and complete plasma saturation occurred at 1000 mg daily. Neutrophils, monocytes, and lymphocytes saturated at 100 mg daily and contained concentrations at least 14-fold higher than plasma. Bioavailability was complete for 200 mg of vitamin C as a single dose. No vitamin C was excreted in urine of six of seven volunteers until the 100-mg dose. At single doses of 500 mg and higher, bioavailability declined and the absorbed amount was excreted. Oxalate and urate excretion were elevated at 1000 mg of vitamin C daily compared to lower doses. Based on these data and Institute of Medicine criteria, the current RDA of 60 mg daily should be increased to 200 mg daily, which can be obtained from fruits and vegetables. Safe doses of vitamin C are less than 1000 mg daily, and vitamin C daily doses above 400 mg have no evident value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EP is a DNA element found in the enhancer and promoter regions of several cellular and viral genes. Previously, we have identified the DNA binding p140/c-Abl protein that specifically recognizes this element. Here we show that phosphorylation is essential for the p140/c-Abl DNA binding activity and for the formation of DNA-protein complexes. Furthermore, by 32P labeling of cells and protein purification, we demonstrate that in vivo the EP-DNA-associated p140/c-Abl is a tyrosine phosphoprotein. By employing two different c-Abl antibodies, we demonstrate the existence of two distinct c-Abl populations in cellular extracts. p140/c-Abl is quantitatively the minor population, is heavily phosphorylated at both serine and tyrosine residues, and is active in autophosphorylation reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compared the tumorigenicity of two src oncogenes, v-src and c-src(527), whose respective protein products pp60v-src and pp60c-src(527) show a different spectrum of amino acid substitutions vis-à-vis the c-src protooncogene-encoded product pp60c-src. Whereas the extent of primary tumor growth induced by c-src(527) was quite similar in the two chicken lines tested, the extent of v-src-induced tumor growth showed a marked line dependence. As examined with a line of chickens that shows immune-mediated regression of v-src-induced tumors, a weaker tumor immunity, as correlated with a greater level of primary tumor growth, resulted from inoculation of c-src(527) DNA than of v-src DNA. These observations indicated that the v-src-specific amino acid substitutions define a major tumor antigenicity. That a separate src-associated antigenicity is also targetable by the tumor immune response followed from the finding that the level of protective immunity against the growth of c-src(527) DNA-induced tumors was augmented under conditions of the prior regression of v-src DNA-induced tumors. As this latter antigenicity may include one or more c-src(527)-encoded peptides that are equivalent to c-src-encoded self peptides, these observations suggest that a host tolerance to pp60c-src can be broken so as to permit a tumor immune response based on recognition of self peptides of pp60c-src(527).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p53 accumulates after DNA damage and arrests cellular growth. These findings suggest a possible role for p53 in the cellular response to DNA damage. We have previously shown that the C terminus of p53 binds DNA nonspecifically and assembles stable tetramers. In this study, we have utilized purified segments of human and murine p53s to determine which p53 domains may participate in a DNA damage response pathway. We find that the C-terminal 75 amino acids of human or murine p53 are necessary and sufficient for the DNA annealing and strand-transfer activities of p53. In addition, both full-length wild-type p53 and the C-terminal 75 amino acids display an increased binding affinity for DNA damaged by restriction digestion, DNase I treatment, or ionizing radiation. In contrast, the central site-specific DNA-binding domain together with the tetramerization domain does not have these activities. We propose that interactions of the C terminus of p53 with damaged DNA may play a role in the activation of p53 in response to DNA damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiolabel from [3H]myristic acid was incorporated by Neurospora crassa into the core catalytic subunit 1 of cytochrome c oxidase (EC 1.9.3.1), as indicated by immunoprecipitation. This modification of the subunit, which was specific for myristic acid, represents an uncommon type of myristoylation through an amide linkage at an internal lysine, rather than an N-terminal glycine. The [3H]myristate, which was chemically recovered from the radiolabeled subunit peptide, modified an invariant Lys-324, based upon analyses of proteolysis products. This myristoylated lysine is found within one of the predicted transmembrane helices of subunit 1 and could contribute to the environment of the active site of the enzyme. The myristate was identified by mass spectrometry as a component of mature subunit 1 of a catalytically active, purified enzyme. To our knowledge, fatty acylation of a mitochondrially synthesized inner-membrane protein has not been reported previously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlike conventional membrane proteins of the secretory pathway, proteins anchored to the cytoplasmic surface of membranes by hydrophobic sequences near their C termini follow a posttranslational, signal recognition particle-independent insertion pathway. Many such C-terminally-anchored proteins have restricted intracellular locations, but it is not known whether these proteins are targeted directly to the membranes in which they will ultimately reside. Here we have analyzed the intracellular sorting of the Golgi protein giantin, which consists of a rod-shaped 376-kDa cytoplasmic domain followed by a hydrophobic C-terminal anchor sequence. Unexpectedly, we find that giantin behaves like a conventional secretory protein in that it inserts into the endoplasmic reticulum (ER) and then is transported to the Golgi. A deletion mutant lacking a portion of the cytoplasmic domain adjacent to the membrane anchor still inserts into the ER but fails to reach the Golgi, even though this mutant has a stable folded structure. These findings suggest that the localization of a C-terminally-anchored Golgi protein involves at least three steps: insertion into the ER membrane, controlled incorporation into transport vesicles, and retention within the Golgi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two classes of RNA ligands that bound to separate, high affinity nucleic acid binding sites on Q beta replicase were previously identified. RNA ligands to the two sites, referred to as site I and site II, were used to investigate the molecular mechanism of RNA replication employed by the four-subunit replicase. Replication inhibition by site I- and site II-specific ligands defined two subsets of replicatable RNAs. When provided with appropriate 3' ends, ligands to either site served as replication templates. UV crosslinking experiments revealed that site I is associated with the S1 subunit, site II with elongation factor Tu, and polymerization with the viral subunit of the holoenzyme. These results provide the framework for a three site model describing template recognition and product strand initiation by Q beta replicase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stimulatory guanine nucleotide binding protein (Gs)-coupled receptors activated by luteinizing hormone, vasopressin, and the catecholamine isoproterenol (luteinizing hormone receptor, type 2 vasopressin receptor, and types 1 and 2 beta-adrenergic receptors) and the Gi-coupled M2 muscarinic receptor (M2R) were expressed transiently in COS cells, alone and in combination with Gbeta gamma dimers, their corresponding Galphas (Galpha(s), or Galpha(i3)) and either Galpha(q) or Galpha(16). Phospholipase C (PLC) activity, assessed by inositol phosphate production from preincorporated myo[3H]inositol, was then determined to gain insight into differential coupling preferences among receptors and G proteins. The following were observed: (i) All receptors tested were able to stimulate PLC activity in response to agonist occupation. The effect of the M2R was pertussis toxin sensitive. (ii) While, as expected, expression of Galpha(q) facilitated an agonist-induced activation of PLC that varied widely from receptor to receptor (400% with type 2 vasopressin receptor and only 30% with M2R), expression of Galpha(16) facilitated about equally well the activation of PLC by any of the tested receptors and thus showed little if any discrimination for one receptor over another. (iii) Gbeta gamma elevated basal (agonist independent) PLC activity between 2- and 4-fold, confirming the proven ability of Gbeta gamma to stimulate PLCbeta. (iv) Activation of expressed receptors by their respective ligands in cells coexpressing excess Gbeta gamma elicited agonist stimulated PLC activities, which, in the case of the M2R, was not blocked by pertussis toxin (PTX), suggesting mediation by a PTX-insensitive PLC-stimulating Galpha subunit, presumably, but not necessarily, of the Gq family. (v) The effects of Gbeta gamma and the PTX-insensitive Galpha elicited by M2R were synergistic, suggesting the possibility that one or more forms of PLC are under conditional or dual regulation of G protein subunits such that stimulation by one sensitizes to the stimulation by the other.