2 resultados para Art 226 Ley 223 de 1995
em National Center for Biotechnology Information - NCBI
Resumo:
Granzyme (Gzm) B-deficient mice obtained by gene targeting were used to assess the role of Gzm B in the mechanisms used by natural killer (NK) and lymphokine-activated killer (LAK) cells to destroy target cells. Gzm B-/- NK cells, LAK cells, and cytotoxic T lymphocytes (CTL) all are defective in their ability to rapidly induce DNA fragmentation/apoptosis in susceptible target cells. This defect can be partially corrected with long incubation times of effector and target cells. Moreover, Gzm B-/- NK cells (but not CTL or LAK cells) exhibit a defect in 51Cr release from susceptible target cells. This 51Cr release defect in Gzm B-deficient NK cells is also not overcome by prolonged incubation times or high effector-to-target cell ratios. We conclude that Gzm B plays a critical and nonredundant role in the rapid induction of DNA fragmentation/apoptosis by NK cells, LAK cells, and CTL. Gzm B may have an additional role in NK cells (but not in CTL or LAK cells) for mediating 51Cr release.
Resumo:
In the past decade, tremendous advances in the state of the art of automatic speech recognition by machine have taken place. A reduction in the word error rate by more than a factor of 5 and an increase in recognition speeds by several orders of magnitude (brought about by a combination of faster recognition search algorithms and more powerful computers), have combined to make high-accuracy, speaker-independent, continuous speech recognition for large vocabularies possible in real time, on off-the-shelf workstations, without the aid of special hardware. These advances promise to make speech recognition technology readily available to the general public. This paper focuses on the speech recognition advances made through better speech modeling techniques, chiefly through more accurate mathematical modeling of speech sounds.