11 resultados para Argentine Hemorrhagic Fever
em National Center for Biotechnology Information - NCBI
Resumo:
Ebola virus causes hemorrhagic fever in humans and nonhuman primates, resulting in mortality rates of up to 90%. Studies of this virus have been hampered by its extraordinary pathogenicity, which requires biosafety level 4 containment. To circumvent this problem, we developed a novel complementation system for functional analysis of Ebola virus glycoproteins. It relies on a recombinant vesicular stomatitis virus (VSV) that contains the green fluorescent protein gene instead of the receptor-binding G protein gene (VSVΔG*). Herein we show that Ebola Reston virus glycoprotein (ResGP) is efficiently incorporated into VSV particles. This recombinant VSV with integrated ResGP (VSVΔG*-ResGP) infected primate cells more efficiently than any of the other mammalian or avian cells examined, in a manner consistent with the host range tropism of Ebola virus, whereas VSVΔG* complemented with VSV G protein (VSVΔG*-G) efficiently infected the majority of the cells tested. We also tested the utility of this system for investigating the cellular receptors for Ebola virus. Chemical modification of cells to alter their surface proteins markedly reduced their susceptibility to VSVΔG*-ResGP but not to VSVΔG*-G. These findings suggest that cell surface glycoproteins with N-linked oligosaccharide chains contribute to the entry of Ebola viruses, presumably acting as a specific receptor and/or cofactor for virus entry. Thus, our VSV system should be useful for investigating the functions of glycoproteins from highly pathogenic viruses or those incapable of being cultured in vitro.
Resumo:
Three novel families of transposable elements, Wukong, Wujin, and Wuneng, are described in the yellow fever mosquito, Aedes aegypti. Their copy numbers range from 2,100 to 3,000 per haploid genome. There are high degrees of sequence similarity within each family, and many structural but not sequence similarities between families. The common structural characteristics include small size, no coding potential, terminal inverted repeats, potential to form a stable secondary structure, A+T richness, and putative 2- to 4-bp A+T-biased specific target sites. Evidence of previous mobility is presented for the Wukong elements. Elements of these three families are associated with 7 of 16 fully or partially sequenced Ae. aegypti genes. Characteristics of these mosquito elements indicate strong similarities to the miniature inverted-repeat transposable elements (MITEs) recently found to be associated with plant genes. MITE-like elements have also been reported in two species of Xenopus and in Homo sapiens. This characterization of multiple families of highly repetitive MITE-like elements in an invertebrate extends the range of these elements in eukaryotic genomes. A hypothesis is presented relating genome size and organization to the presence of highly reiterated MITE families. The association of MITE-like elements with Ae. aegypti genes shows the same bias toward noncoding regions as in plants. This association has potentially important implications for the evolution of gene regulation.
Resumo:
Hemorrhagic shock (HS) and resuscitation leads to widespread production of oxidant species. Activation of the enzyme poly(ADP-ribose) polymerase (PARP) has been shown to contribute to cell necrosis and organ failure in various disease conditions associated with oxidative stress. We tested the hypothesis whether PARP activation plays a role in the multiple organ dysfunction complicating HS and resuscitation in a murine model of HS and resuscitation by using mice genetically deficient in PARP (PARP−/−) and their wild-type littermates (PARP+/+). Animals were bled to a mean blood pressure of 45 mmHg (1 mmHg = 133 Pa) and resuscitated after 45 min with isotonic saline (2× volume of shed blood). There was a massive activation of PARP, detected by poly(ADP-ribose) immunohistochemistry, which localized to the areas of the most severe intestinal injury, i.e., the necrotic epithelial cells at the tip of the intestinal villi, and colocalized with tyrosine nitration, an index of peroxynitrite generation. Intestinal PARP activation resulted in gut hyperpermeability, which developed in PARP+/+ but not PARP−/− mice. PARP−/− mice were also protected from the rapid decrease in blood pressure after resuscitation and showed an increased survival time, as well as reduced lung neutrophil sequestration. The beneficial effects of PARP suppression were not related to a modulation of the NO pathway nor to a modulation of signaling through IL-6, which similarly increased in both PARP+/+ and PARP−/− mice exposed to HS. We propose that PARP activation and associated cell injury (necrosis) plays a crucial role in the intestinal injury, cardiovascular failure, and multiple organ damage associated with resuscitated HS.
Resumo:
Objective: To compare the feasibility of treatment, safety, and toxicity of intravenous amphotericin B deoxycholate prepared in either glucose or intralipid for empirical antimycotic treatment of neutropenic cancer patients.
Resumo:
Poxviruses encode proteins that block the activity of cytokines. Here we show that the study of such virulence factors can contribute to our understanding of not only virus pathogenesis but also the physiological role of cytokines. Fever is a nonspecific response to infection that contributes to host defense. Several cytokines induce an elevation of body temperature when injected into animals, but in naturally occurring fever it has been difficult to show that any cytokine has a critical role. We describe the first example of the suppression of fever by a virus and the molecular mechanism leading to it. Several vaccinia virus strains including smallpox vaccines express soluble interleukin 1 (IL-1) receptors, which bind IL-1 beta but not IL-1 alpha. These viruses prevent the febrile response in infected mice, whereas strains that naturally or through genetic engineering lack the receptor induce fever. Repair of the defective IL-1 beta inhibitor in the smallpox vaccine Copenhagen, a more virulent virus than the widely used vaccine strains Wyeth and Lister, suppresses fever and attenuates the disease. The vaccinia-induced fever was inhibited with antibodies to IL-1 beta. These findings provide strong evidence that IL-1 beta, and not other cytokines, is the major endogenous pyrogen in a poxvirus infection.
Resumo:
Chronic administration of estrogen to the Fischer 344 (F344) rat induces growth of large, hemorrhagic pituitary tumors. Ten weeks of diethylstilbestrol (DES) treatment caused female F344 rat pituitaries to grow to an average of 109.2 +/- 6.3 mg (mean +/- SE) versus 11.3 +/- 1.4 mg for untreated rats, and to become highly hemorrhagic. The same DES treatment produced no significant growth (8.9 +/- 0.5 mg for treated females versus 8.7 +/- 1.1 for untreated females) or morphological changes in Brown Norway (BN) rat pituitaries. An F1 hybrid of F344 and BN exhibited significant pituitary growth after 10 weeks of DES treatment with an average mass of 26.3 +/- 0.7 mg compared with 8.6 +/- 0.9 mg for untreated rats. Surprisingly, the F1 hybrid tumors were not hemorrhagic and had hemoglobin content and outward appearance identical to that of BN. Expression of both growth and morphological changes is due to multiple genes. However, while DES-induced pituitary growth exhibited quantitative, additive inheritance, the hemorrhagic phenotype exhibited recessive, epistatic inheritance. Only 5 of the 160 F2 pituitaries exhibited the hemorrhagic phenotype; 36 of the 160 F2 pituitaries were in the F344 range of mass, but 31 of these were not hemorrhagic, indicating that the hemorrhagic phenotype is not merely a consequence of extensive growth. The hemorrhagic F2 pituitaries were all among the most massive, indicating that some of the genes regulate both phenotypes.