7 resultados para Area in hectare
em National Center for Biotechnology Information - NCBI
Resumo:
Two motor areas are known to exist in the medial frontal lobe of the cerebral cortex of primates, the supplementary motor area (SMA) and the presupplementary motor area (pre-SMA). We report here on an aspect of cellular activity that characterizes the pre-SMA. Monkeys were trained to perform three different movements sequentially in a temporal order. The correct order was planned on the basis of visual information before its execution. A group of pre-SMA cells (n = 64, 25%) were active during a process when monkeys were required to discard a current motor plan and develop a plan appropriate for the next orderly movements. Such activity was not common in the SMA and not found in the primary motor cortex. Our data suggest a role of pre-SMA cells in updating motor plans for subsequent temporally ordered movements.
Resumo:
We report characterization of a human T-cell lymphotropic virus type II (HTLV-II) isolated from an interleukin 2-dependent CD8 T-cell line derived from peripheral blood mononuclear cells of a healthy, HTLV-II-seropositive female Bakola Pygmy, aged 59, living in a remote equatorial forest area in south Cameroon. This HTLLV-II isolate, designated PYGCAM-1, reacted in an indirect immunofluorescence assay with HTLV-II and HTLV-I polyclonal antibodies and with an HTLV-I/II gp46 monoclonal antibody but not with HTLV-I gag p19 or p24 monoclonal antibodies. The cell line produced HTLV-I/II p24 core antigen and retroviral particles. The entire env gene (1462 bp) and most of the long terminal repeat (715 bp) of the PYGCAM-1 provirus were amplified by the polymerase chain reaction using HTLV-II-specific primers. Comparison with the long terminal repeat and envelope sequences of prototype HTLV-II strains indicated that PYGCAM-1 belongs to the subtype B group, as it has only 0.5-2% nucleotide divergence from HTLV-II B strains. The finding of antibodies to HTLV-II in sera taken from the father of the woman in 1984 and from three unrelated members of the same population strongly suggests that PYGCAM-1 is a genuine HTLV-II that has been present in this isolated population for a long time. The low genetic divergence of this African isolate from American isolates raises questions about the genetic variability over time and the origin and dissemination of HTLV-II, hitherto considered to be predominantly a New World virus.
Resumo:
Recent studies indicated that hyperactivity of the hypothalamo-pituitary-adrenal system is a considerable risk factor for the precipitation of affective disorders, most notably of major depression. The mechanism by which this hyperactivity eventually leads to clinical symptoms of depression is unknown. In the present animal study, we tested one possible mechanism, i.e., that long-term exposure to high corticosterone levels alters functional responses to serotonin in the hippocampus, an important area in the etiology of depression. Rats were injected daily for 3 weeks with a high dose of corticosterone; electrophysiological responses to serotonin were recorded intracellularly from CA1 pyramidal neurons in vitro. We observed that daily injections with corticosterone gradually attenuate the membrane hyperpolarization and resistance decrease mediated by serotonin-1A receptors. We next used single-cell antisense RNA amplification from identified CA1 pyramidal neurons to resolve whether the functional deficits in serotonin responsiveness are accompanied by decreased expression levels of the serotonin-1A receptor. It appeared that expression of serotonin-1A receptors in CA1 pyramidal cells is not altered; this result was supported by in situ hybridization. Expression of corticosteroid receptors in the same cells, particularly of the high-affinity mineralocorticoid receptor, was significantly reduced after long-term corticosterone treatment. The present findings indicate that prolonged elevation of the corticosteroid concentration, a possible causal factor for major depression in humans, gradually attenuates responsiveness to serotonin without necessarily decreasing serotonin-1A receptor mRNA levels in pyramidal neurons. These functional changes may occur by a posttranscriptional mechanism or by transcriptional regulation of genes other than the serotonin-1A receptor gene itself.
Resumo:
Objective: To estimate the magnitude of serious eye disorders and of visual impairment in a defined elderly population of a typical metropolitan area in England, and to assess the frequency they were in touch with, or known to, the eye care services.
Resumo:
We have studied the effects of endogenous and exogenous estrogen on atherosclerotic lesions in apolipoprotein E-deficient mice. Female mice ovariectomized (OVX) at weaning displayed increases (P < 0.01) in fatty streak lesions in the proximal aorta and aortic sinus compared with female mice with intact ovarian function. These differences between the OVX and sham controls were apparent in both chow- and "Western-type" diet-fed mice. Moreover, increases in lesion size following OVX occurred without changes in plasma cholesterol. Hormone replacement with subdermal 17-beta-estradiol pellets releasing either 6, 14, or 28 micrograms/day significantly decreased (P < 0.001) atherosclerotic lesion area in both male and OVX female mice. In contrast, neither 17-alpha-estradiol (28 micrograms/day) or tamoxifen (85 micrograms/day) affected lesion progression in OVX female mice. In the Western diet-fed group, exogenous estradiol markedly reduced plasma cholesterol and triglycerides, whereas, in animals fed the chow diet, exogenous estrogen and tamoxifen treatment only decreased plasma and very low density lipoprotein triglycerides. However, lesion area was only weakly correlated with plasma cholesterol and triglycerides, 0.35 and 0.44 tau values, respectively (P < 0.01). In summary, in the apolipoprotein E-deficient mouse 17-beta-estradiol protects against atherosclerotic lesion formation, and this can only be partially explained through effects on plasma lipoprotein levels.
Resumo:
Lipoprotein lipase (LPL) is a key enzyme in the hydrolysis of triglyceride-rich lipoproteins. Conflicting results have been reported concerning its role in atherogenesis. To determine the effects of the overexpressed LPL on diet-induced atherosclerosis, we have generated low density lipoprotein receptor (LDLR) knockout mice that overexpressed human LPL transgene (LPL/LDLRKO) and compared their plasma lipoproteins and atherosclerosis with those in nonexpressing LDLR-knockout mice (LDLRKO). On a normal chow diet, LPL/LDLRKO mice showed marked suppression of mean plasma triglyceride levels (32 versus 236 mg/dl) and modest decrease in mean cholesterol levels (300 versus 386 mg/dl) as compared with LDLRKO mice. Larger lipoprotein particles of intermediate density lipoprotein (IDL)/LDL were selectively reduced in LPL/LDLRKO mice. On an atherogenic diet, both mice exhibited severe hypercholesterolemia. But, mean plasma cholesterol levels in LPL/ LDLRKO mice were still suppressed as compared with that in LDLRKO mice (1357 versus 2187 mg/dl). Marked reduction in a larger subfraction of IDL/LDL, which conceivably corresponds to remnant lipoproteins, was observed in the LPL/LDLRKO mice. LDLRKO mice developed severe fatty streak lesions in the aortic sinus after feeding with the atherogenic diet for 8 weeks. In contrast, mean lesion area in the LPL/LDLRKO mice was 18-fold smaller than that in LDLRKO mice. We suggest that the altered lipoprotein profile, in particular the reduced level of remnant lipoproteins, is mainly responsible for the protection by LPL against atherosclerosis.
Resumo:
Protein-DNA interactions were studied in vivo at the region containing a human DNA replication origin, located at the 3' end of the lamin B2 gene and partially overlapping the promoter of another gene, located downstream. DNase I treatment of nuclei isolated from both exponentially growing and nonproliferating HL-60 cells showed that this region has an altered, highly accessible, chromatin structure. High-resolution analysis of protein-DNA interactions in a 600-bp area encompassing the origin was carried out by the in vivo footprinting technique based on the ligation-mediated polymerase chain reaction. In growing HL-60 cells, footprints at sequences homologous to binding sites for known transcription factors (members of the basic-helix-loop-helix family, nuclear respiratory factor 1, transcription factor Sp1, and upstream binding factor) were detected in the region corresponding to the promoter of the downstream gene. Upon conversion of cells to a nonproliferative state, a reduction in the intensity of these footprints was observed that paralleled the diminished transcriptional activity of the genomic area. In addition to these protections, in close correspondence to the replication initiation site, a prominent footprint was detected that extended over 70 nucleotides on one strand only. This footprint was absent from nonproliferating HL-60 cells, indicating that this specific protein-DNA interaction might be involved in the process of origin activation.