39 resultados para Apoptotic neutrophils
em National Center for Biotechnology Information - NCBI
Resumo:
Neutrophils in tissue culture spontaneously undergo programmed cell death (apoptosis), a process characterized by well-defined morphological alterations affecting the cell nucleus. We found that these morphological changes were preceded by intracellular acidification and that acidification and the apoptotic changes in nuclear morphology were both delayed by granulocyte colony-stimulating factor (G-CSF). Among the agents that defend neutrophils against intracellular acidification is a vacuolar H(+)-ATPase that pumps protons out of the cytosol. When this proton pump was inhibited by bafilomycin A1, G-CSF no longer protected the neutrophils against apoptosis. We conclude that G-CSF delays apoptosis in neutrophils by up-regulating the cells' vacuolar H(+)-ATPase and that intracellular acidification is an early event in the apoptosis program.
Resumo:
Programmed cell death regulates a number of biological phenomena, and the apoptotic signal must itself be tightly controlled to avoid inappropriate cell death. We established a genetic screen to search for molecules that inhibit the apoptotic signal from the Fas receptor. Here we report the isolation of a gene, LFG, that protects cells uniquely from Fas but not from the mechanistically related tumor necrosis factor α death signal. LFG is widely distributed, but remarkably is highly expressed in the hippocampus. LFG can bind to the Fas receptor, but does not regulate Fas expression or interfere with binding of an agonist antibody. Furthermore LFG does not inhibit binding of FADD to Fas.
Resumo:
Persistent infection with hepatitis B virus (HBV) is a leading cause of human liver disease and is strongly associated with hepatocellular carcinoma, one of the most prevalent forms of human cancer. Apoptosis (programmed cell death) is an important mediator of chronic liver disease caused by HBV infection. It is demonstrated that the HBV HBx protein acutely sensitizes cells to apoptotic killing when expressed during viral replication in cultured cells and in transfected cells independently of other HBV genes. Cells that were resistant to apoptotic killing by high doses of tumor necrosis factor α (TNFα), a cytokine associated with liver damage during HBV infection, were made sensitive to very low doses of TNFα by HBx. HBx induced apoptosis by prolonged stimulation of N-Myc and the stress-mediated mitogen-activated-protein kinase kinase 1 (MEKK1) pathway but not by up-regulating TNF receptors. Cell killing was blocked by inhibiting HBx stimulation of N-Myc or mitogen-activated-protein kinase kinase 1 using dominant-interfering forms or by retargeting HBx from the cytoplasm to the nucleus, which prevents HBx activation of cytoplasmic signal transduction cascades. Treatment of cells with a mitogenic growth factor produced by many virus-induced tumors impaired induction of apoptosis by HBx and TNFα. These results indicate that HBx might be involved in HBV pathogenesis (liver disease) during virus infection and that enhanced apoptotic killing by HBx and TNFα might select for neoplastic hepatocytes that survive by synthesizing mitogenic growth factors.
Resumo:
Neurons undergoing targeted photolytic cell death degenerate by apoptosis. Clonal, multipotent neural precursor cells were transplanted into regions of adult mouse neocortex undergoing selective degeneration of layer II/III pyramidal neurons via targeted photolysis. These precursors integrated into the regions of selective neuronal death; 15 ± 7% differentiated into neurons with many characteristics of the degenerated pyramidal neurons. They extended axons and dendrites and established afferent synaptic contacts. In intact and kainic acid-lesioned control adult neocortex, transplanted precursors differentiated exclusively into glia. These results suggest that the microenvironmental alterations produced by this synchronous apoptotic neuronal degeneration in adult neocortex induced multipotent neural precursors to undergo neuronal differentiation which ordinarily occurs only during embryonic corticogenesis. Studying the effects of this defined microenvironmental perturbation on the differentiation of clonal neural precursors may facilitate identification of factors involved in commitment and differentiation during normal development. Because photolytic degeneration simulates some mechanisms underlying apoptotic neurodegenerative diseases, these results also suggest the possibility of neural precursor transplantation as a potential cell replacement or molecular support therapy for some diseases of neocortex, even in the adult.
Resumo:
Neutrophils are important effector cells in immunity to microorganisms, particularly bacteria. Here, we show that the process of neutrophil apoptosis is delayed in several inflammatory diseases, suggesting that this phenomenon may represent a general feature contributing to the development of neutrophilia, and, therefore, in many cases to host defense against infection. The delay of neutrophil apoptosis was associated with markedly reduced levels of Bax, a pro-apoptotic member of the Bcl-2 family. Such Bax-deficient cells were also observed upon stimulation of normal neutrophils with cytokines present at sites of neutrophilic inflammation, such as granulocyte and granulocyte–macrophage colony-stimulating factors, in vitro. Moreover, Bax-deficient neutrophils generated by using Bax antisense oligodeoxynucleotides demonstrated delayed apoptosis, providing direct evidence for a role of Bax as a pro-apoptotic molecule in these cells. Interestingly, the Bax gene was reexpressed in Bax-deficient neutrophils under conditions of cytokine withdrawal. Thus, both granulocyte expansion and the resolution of inflammation appear to be regulated by the expression of the Bax gene in neutrophils.
Resumo:
The protooncogene c-abl encodes a nonreceptor tyrosine kinase whose cellular function is unknown. To study the possible involvement of c-Abl in proliferation, differentiation, and cell cycle regulation of early B cells, long-term lymphoid bone marrow cultures were established from c-abl-deficient mice and their wild-type littermates. Interleukin 7-dependent progenitor B-cell clones and lines expressing B220 and CD43 could be generated from both mutant and wild-type mice. The mutant and wild-type lines displayed no difference in their proliferative capacity as measured by thymidine incorporation in response to various concentrations of interleukin 7. Similarly, c-abl deficiency did not interfere with the ability of mutant clones to differentiate into surface IgM-positive cells in vitro. Analysis of cultures after growth factor deprivation, however, revealed a strikingly accelerated rate of cell death in c-abl mutant cells, due to apoptosis as confirmed by terminal deoxynucleotidyltransferase-mediated UTP nick end labeling analysis. Furthermore, a greater susceptibility to apoptotic cell death in c-abl mutant cells was also observed after glucocorticoid treatment. These results suggest that mutant c-Abl renders the B-cell progenitors more sensitive to apoptosis, and may account for some of the phenotypes observed in c-abl-deficient animals.
Resumo:
In this study we investigated, using intravital microscopy, how neutrophil extravasation across mouse mesenteric postcapillary venules is inhibited by the glucocorticoid-regulated protein lipocortin (LC; also termed annexin) 1. Intraperitoneal injection of 1 mg of zymosan into mice induced neutrophil rolling on the activated mesenteric endothelium followed by adhesion (maximal at 2 hr: 5–6 cells per 100-μm of vessel length) and emigration (maximal at 4 hr: 8–10 cells per high-powered field). Treatment of mice with human recombinant LC1 (2 mg/kg s.c.) or its mimetic peptide Ac2–26 (13 mg/kg s.c.) did not modify cell rolling but markedly reduced (≥50%) the degree of neutrophil adhesion and emigration (P < 0.05). Intravenous treatment with peptide Ac2–26 (13 mg/kg) or recombinant human LC1 (0.7–2 mg/kg) promoted detachment of neutrophils adherent to the endothelium 2 hr after zymosan administration, with adherent cells detaching within 4.12 ± 0.75 min and 2.36 ± 0.31 min, respectively (n = 20–25 cells). Recruitment of newly adherent cells to the endothelium was unaffected. The structurally related protein LC5 was inactive in this assay, whereas a chimeric molecule constructed from the N terminus of LC1 (49 aa) attached to the core region of LC5 produced cell detachment with kinetics similar to LC1. Removal of adherent neutrophils from activated postcapillary endothelium is a novel pharmacological action, and it is at this site where LC1 and its mimetics operate to down-regulate this aspect of the host inflammatory response.
Resumo:
DAD1, the defender against apoptotic cell death, was initially identified as a negative regulator of programmed cell death in the BHK21-derived tsBN7 cell line. Of interest, the 12.5-kDa DAD1 protein is 40% identical in sequence to Ost2p, the 16-kDa subunit of the yeast oligosaccharyltransferase (OST). Although the latter observation suggests that DAD1 may be a mammalian OST subunit, biochemical evidence to support this hypothesis has not been reported. Previously, we showed that canine OST activity is associated with an oligomeric complex of ribophorin I, ribophorin II, and OST48. Here, we demonstrate that DAD1 is a tightly associated subunit of the OST both in the intact membrane and in the purified enzyme. Sedimentation velocity analyses of detergent-solubilized WI38 cells and canine rough microsomes show that DAD1 cosediments precisely with OST activity and with the ribophorins and OST48. Radioiodination of the purified OST reveals that DAD1 is present in roughly equimolar amounts relative to the other subunits. DAD1 can be crosslinked to OST48 in intact microsomes with dithiobis(succinimidylpropionate). Crosslinked ribophorin II–OST48 heterodimers, DAD1–ribophorin II–OST48 heterotrimers and DAD1–ribophorin I–ribophorin II–OST48 heterotetramers also were detected. The demonstration that DAD1 is a subunit of the OST suggests that induction of a cell death pathway upon loss of DAD1 in the tsBN7 cell line reflects the essential nature of N-linked glycosylation in eukaryotes.
Resumo:
In the intracellular death program, hetero- and homodimerization of different anti- and pro-apoptotic Bcl-2-related proteins are critical in the determination of cell fate. From a rat ovarian fusion cDNA library, we isolated a new pro-apoptotic Bcl-2 gene, Bcl-2-related ovarian killer (Bok). Bok had conserved Bcl-2 homology (BH) domains 1, 2, and 3 and a C-terminal transmembrane region present in other Bcl-2 proteins, but lacked the BH4 domain found only in anti-apoptotic Bcl-2 proteins. In the yeast two-hybrid system, Bok interacted strongly with some (Mcl-1, BHRF1, and Bfl-1) but not other (Bcl-2, Bcl-xL, and Bcl-w) anti-apoptotic members. This finding is in direct contrast to the ability of other pro-apoptotic members (Bax, Bak, and Bik) to interact with all of the anti-apoptotic proteins. In addition, negligible interaction was found between Bok and different pro-apoptotic members. In mammalian cells, overexpression of Bok induced apoptosis that was blocked by the baculoviral-derived cysteine protease inhibitor P35. Cell killing induced by Bok was also suppressed following coexpression with Mcl-1 and BHRF1 but not with Bcl-2, further indicating that Bok heterodimerized only with selective anti-apoptotic Bcl-2 proteins. Northern blot analysis indicated that Bok was highly expressed in the ovary, testis and uterus. In situ hybridization analysis localized Bok mRNA in granulosa cells, the cell type that underwent apoptosis during follicle atresia. Identification of Bok as a new pro-apoptotic Bcl-2 protein with restricted tissue distribution and heterodimerization properties could facilitate elucidation of apoptosis mechanisms in reproductive tissues undergoing hormone-regulated cyclic cell turnover.
Resumo:
A toxic dose of the nitric oxide (NO) donor S-nitrosoglutathione (GSNO; 1 mM) promoted apoptotic cell death of RAW 264.7 macrophages, which was attenuated by cellular preactivation with a nontoxic dose of GSNO (200 μM) or with lipopolysaccharide, interferon-γ, and NG-monomethyl-l-arginine (LPS/IFN-γ/NMMA) for 15 h. Protection from apoptosis was achieved by expression of cyclooxygenase-2 (Cox-2). Here we investigated the underlying mechanisms leading to Cox-2 expression. LPS/IFN-γ/NMMA prestimulation activated nuclear factor (NF)-κB and promoted Cox-2 expression. Cox-2 induction by low-dose GSNO demanded activation of both NF-κB and activator protein-1 (AP-1). NF-κB supershift analysis implied an active p50/p65 heterodimer, and a luciferase reporter construct, containing four copies of the NF-κB site derived from the murine Cox-2 promoter, confirmed NF-κB activation after NO addition. An NF-κB decoy approach abrogated not only Cox-2 expression after low-dose NO or after LPS/IFN-γ/NMMA but also inducible protection. The importance of AP-1 for Cox-2 expression and cell protection by low-level NO was substantiated by using the extracellular signal-regulated kinase inhibitor PD98059, blocking NO-elicited Cox-2 expression, but leaving the cytokine signal unaltered. Transient transfection of a dominant-negative c-Jun mutant further attenuated Cox-2 expression by low-level NO. Whereas cytokine-mediated Cox-2 induction relies on NF-κB activation, a low-level NO–elicited Cox-2 response required activation of both NF-κB and AP-1.
Resumo:
Persistent directional movement of neutrophils in shallow chemotactic gradients raises the possibility that cells can increase their sensitivity to the chemotactic signal at the front, relative to the back. Redistribution of chemoattractant receptors to the anterior pole of a polarized neutrophil could impose asymmetric sensitivity by increasing the relative strength of detected signals at the cell’s leading edge. Previous experiments have produced contradictory observations with respect to receptor location in moving neutrophils. To visualize a chemoattractant receptor directly during chemotaxis, we expressed a green fluorescent protein (GFP)-tagged receptor for a complement component, C5a, in a leukemia cell line, PLB-985. Differentiated PLB-985 cells, like neutrophils, adhere, spread, and polarize in response to a uniform concentration of chemoattractant, and orient and crawl toward a micropipette containing chemoattractant. Recorded in living cells, fluorescence of the tagged receptor, C5aR–GFP, shows no apparent increase anywhere on the plasma membrane of polarized and moving cells, even at the leading edge. During chemotaxis, however, some cells do exhibit increased amounts of highly folded plasma membrane at the leading edge, as detected by a fluorescent probe for membrane lipids; this is accompanied by an apparent increase of C5aR–GFP fluorescence, which is directly proportional to the accumulation of plasma membrane. Thus neutrophils do not actively concentrate chemoattractant receptors at the leading edge during chemotaxis, although asymmetrical distribution of membrane may enrich receptor number, relative to adjacent cytoplasmic volume, at the anterior pole of some polarized cells. This enrichment could help to maintain persistent migration in a shallow gradient of chemoattractant.
Resumo:
Ciliates are unicellular eukaryotic organisms containing two types of nuclei: macronuclei and micronuclei. After the sexual pathway takes place, a new macronucleus is formed from a zygote nucleus, whereas the old macronucleus is degraded and resorbed. In the course of macronuclear differentiation, polytene chromosomes are synthesized that become degraded again after some hours. Most of the DNA is eliminated, and the remaining DNA is fragmented into small DNA molecules that are amplified to a high copy number in the new macronucleus. The protein Pdd1p (programmed DNA degradation protein 1) from Tetrahymena has been shown to be present in macronuclear anlagen in the DNA degradation stage and also in the old macronuclei, which are resorbed during the formation of the new macronucleus. In this study the identification and localization of a Pdd1p homologous protein in Stylonychia (Spdd1p) is described. Spdd1p is localized in the precursor nuclei in the DNA elimination stage and in the old macronuclei during their degradation, but also in macronuclei and micronuclei of starved cells. In all of these nuclei, apoptotic-like DNA breakdown was detected. These data suggest that Spdd1p is a general factor involved in programmed DNA degradation in Stylonychia.
Resumo:
In neutrophils activated to secrete with formyl-methionyl-leucyl-phenylalanine, intermediate filaments are phosphorylated transiently by cyclic guanosine monophosphate (cGMP)-dependent protein kinase (G-kinase). cGMP regulation of vimentin organization was investigated. During granule secretion, cGMP levels were elevated and intermediate filaments were transiently assembled at the pericortex to areas devoid of granules and microfilaments. Microtubule and microfilament inhibitors affected intermediate filament organization, granule secretion, and cGMP levels. Cytochalasin D and nocodazole caused intermediate filaments to assemble at the nucleus, rather than at the pericortex. cGMP levels were elevated in neutrophils by both inhibitors; however, with cytochalasin D, cGMP was elevated earlier and granule secretion was excessive. Nocodazole did not affect normal cGMP elevations, but specific granule secretion was delayed. LY83583, a guanylyl cyclase antagonist, inhibited granule secretion and intermediate filament organization, but not microtubule or microfilament organization. Intermediate filament assembly at the pericortex and secretion were partially restored by 8-bromo-cGMP in LY83583-treated neutrophils, suggesting that cGMP regulates these functions. G-kinase directly induced intermediate filament assembly in situ, and protein phosphatase 1 disassembled filaments. However, in intact cells stimulated with formyl-methionyl-leucyl-phenylalanine, intermediate filament assembly is focal and transient, suggesting that vimentin phosphorylation is compartmentalized. We propose that, in addition to changes in microfilament and microtubule organization, granule secretion is also accompanied by changes in intermediate filament organization, and that cGMP regulates vimentin filament organization via activation of G-kinase.
Resumo:
The Fas/APO-1-receptor associated cysteine protease Mch5 (MACH/FLICE) is believed to be the enzyme responsible for activating a protease cascade after Fas-receptor ligation, leading to cell death. The Fas-apoptotic pathway is potently inhibited by the cowpox serpin CrmA, suggesting that Mch5 could be the target of this serpin. Bacterial expression of proMch5 generated a mature enzyme composed of two subunits, which are derived from the precursor proenzyme by processing at Asp-227, Asp-233, Asp-391, and Asp-401. We demonstrate that recombinant Mch5 is able to process/activate all known ICE/Ced-3-like cysteine proteases and is potently inhibited by CrmA. This contrasts with the observation that Mch4, the second FADD-related cysteine protease that is also able to process/activate all known ICE/Ced-3-like cysteine proteases, is poorly inhibited by CrmA. These data suggest that Mch5 is the most upstream protease that receives the activation signal from the Fas-receptor to initiate the apoptotic protease cascade that leads to activation of ICE-like proteases (TX, ICE, and ICE-relIII), Ced-3-like proteases (CPP32, Mch2, Mch3, Mch4, and Mch6), and the ICH-1 protease. On the other hand, Mch4 could be a second upstream protease that is responsible for activation of the same protease cascade in CrmA-insensitive apoptotic pathways.
Resumo:
Neisseria gonorrhoeae (GC) or Escherichia coli expressing phase-variable opacity (Opa) protein (Opa+ GC or Opa+ E. coli) adhere to human neutrophils and stimulate phagocytosis, whereas their counterparts not expressing Opa protein (Opa− GC or Opa− E. coli) do not. Opa+ GC or E. coli do not adhere to human lymphocytes and promyelocytic cell lines such as HL-60 cells. The adherence of Opa+ GC to the neutrophils can be enhanced dramatically if the neutrophils are preactivated. These data suggest that the components binding the Opa+ bacteria might exist in the granules. CGM1a antigen, a transmembrane protein of the carcinoembryonic antigen family, is exclusively expressed in the granulocytic lineage. The predicted molecular weight of CGM1a is ≈30 kDa. We observed specific binding of OpaI+ E. coli to a 30-kDa band of polymorphonuclear leukocytes lysates. To prove the hypothesis that the 30-kDa CGM1a antigen from neutrophils was the receptor of Opa+ bacteria, we showed that a HeLa cell line expressing human CGM1a antigen (HeLa-CGM1a) bound Opa+ E. coli and subsequently engulfed the bacteria. Monoclonal antibodies (COL-1) against CGM1 blocked the interaction between Opa+ E. coli and HeLa-CGM1a. These results demonstrate that HeLa cells when expressing the CGM1a antigens bind and internalize OpaI+ bacteria.