4 resultados para Antinociceptive
em National Center for Biotechnology Information - NCBI
Resumo:
Ultra-low picomolar concentrations of the opioid antagonists naloxone (NLX) and naltrexone (NTX) have remarkably potent antagonist actions on excitatory opioid receptor functions in mouse dorsal root ganglion (DRG) neurons, whereas higher nanomolar concentrations antagonize excitatory and inhibitory opioid functions. Pretreatment of naive nociceptive types of DRG neurons with picomolar concentrations of either antagonist blocks excitatory prolongation of the Ca(2+)-dependent component of the action potential duration (APD) elicited by picomolar-nanomolar morphine and unmasks inhibitory APD shortening. The present study provides a cellular mechanism to account for previous reports that low doses of NLX and NTX paradoxically enhance, instead of attenuate, the analgesic effects of morphine and other opioid agonists. Furthermore, chronic cotreatment of DRG neurons with micromolar morphine plus picomolar NLX or NTX prevents the development of (i) tolerance to the inhibitory APD-shortening effects of high concentrations of morphine and (ii) supersensitivity to the excitatory APD-prolonging effects of nanomolar NLX as well as of ultra-low (femtomolar-picomolar) concentrations of morphine and other opioid agonists. These in vitro studies suggested that ultra-low doses of NLX or NTX that selectively block the excitatory effects of morphine may not only enhance the analgesic potency of morphine and other bimodally acting opioid agonists but also markedly attenuate their dependence liability. Subsequent correlative studies have now demonstrated that cotreatment of mice with morphine plus ultra-low-dose NTX does, in fact, enhance the antinociceptive potency of morphine in tail-flick assays and attenuate development of withdrawal symptoms in chronic, as well as acute, physical dependence assays.
Resumo:
Norepinephrine contributes to antinociceptive, sedative, and sympatholytic responses in vivo, and α2 adrenergic receptor (α2AR) agonists are used clinically to mimic these effects. Lack of subtype-specific agonists has prevented elucidation of the role that each α2AR subtype (α2A, α2B, and α2C) plays in these central effects. Here we demonstrate that α2AR agonist-elicited sedative, anesthetic-sparing, and analgesic responses are lost in a mouse line expressing a subtly mutated α2AAR, D79N α2AAR, created by two-step homologous recombination. These functional changes are accompanied by failure of the D79N α2AAR to inhibit voltage-gated Ca2+ currents and spontaneous neuronal firing, a measure of K+ current activation. These results provide definitive evidence that the α2AAR subtype is the primary mediator of clinically important central actions of α2AR agonists and suggest that the D79N α2AAR mouse may serve as a model for exploring other possible α2AAR functions in vivo.
Resumo:
Antagonists of glutamate receptors of the N-methyl-d-aspartate subclass (NMDAR) or inhibitors of nitric oxide synthase (NOS) prevent nervous system plasticity. Inflammatory and neuropathic pain rely on plasticity, presenting a clinical opportunity for the use of NMDAR antagonists and NOS inhibitors in chronic pain. Agmatine (AG), an endogenous neuromodulator present in brain and spinal cord, has both NMDAR antagonist and NOS inhibitor activities. We report here that AG, exogenously administered to rodents, decreased hyperalgesia accompanying inflammation, normalized the mechanical hypersensitivity (allodynia/hyperalgesia) produced by chemical or mechanical nerve injury, and reduced autotomy-like behavior and lesion size after excitotoxic spinal cord injury. AG produced these effects in the absence of antinociceptive effects in acute pain tests. Endogenous AG also was detected in rodent lumbosacral spinal cord in concentrations similar to those previously detected in brain. The evidence suggests a unique antiplasticity and neuroprotective role for AG in processes underlying persistent pain and neuronal injury.
Resumo:
Several mechanisms have been identified that may underlie inflammation-induced sensitization of high-threshold primary afferent neurons, including the modulation of voltage- and Ca2+-dependent ion channels and ion channels responsible for the production of generator potentials. One such mechanism that has recently received a lot of attention is the modulation of a tetrodotoxin (TTX)-resistant voltage-gated Na+ current. Evidence supporting a role for TTX-resistant Na+ currents in the sensitization of primary afferent neurons and inflammatory hyperalgesia is reviewed. Such evidence is derived from studies on the distribution of TTX-resistant Na+ currents among primary afferent neurons and other tissues of the body that suggest that these currents are expressed only in a subpopulation of primary afferent neurons that are likely to be involved in nociception. Data from studies on the biophysical properties of these currents suggest that they are ideally suited to mediate the repetitive discharge associated with prolonged membrane depolarizations. Data from studies on the effects of inflammatory mediators and antinociceptive agents on TTX-resistant Na+ currents suggest that modulation of these currents is an underlying mechanism of primary afferent neuron sensitization. In addition, the second-messenger pathways underlying inflammatory mediator-induced modulation of these currents appear to underlie inflammatory mediator-induced hyperalgesia. Finally, recent antisense studies have also yielded data supporting a role for TTX-resistant Na+ currents in inflammatory hyperalgesia. Although data from these studies are compelling, data presented at the Neurobiology of Pain colloquium raised a number of interesting questions regarding the role of TTX-resistant Na+ currents in inflammatory hyperalgesia; implications of three of these questions are discussed.