37 resultados para Antigens, CD3

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transgenic expression of the influenza virus hemagglutinin (HA) in the pancreatic islet β cells of InsHA mice leads to peripheral tolerance of HA-specific T cells. To examine the onset of tolerance, InsHA mice were immunized with influenza virus A/PR/8 at different ages, and the presence of nontolerant T cells was determined by the induction of autoimmune diabetes. The data revealed a neonatal period wherein T cells were not tolerant and influenza virus infection led to HA-specific β cell destruction and autoimmune diabetes. The ability to induce autoimmunity gradually waned, such that adult mice were profoundly tolerant to viral HA and were protected from diabetes. Because cross-presentation of islet antigens by professional antigen-presenting cells had been reported to induce peripheral tolerance, the temporal relationship between tolerance induction and activation of HA-specific T cells in the lymph nodes draining the pancreas was examined. In tolerant adult mice, but not in 1-week-old neonates, activation and proliferation of HA-specific CD8+ T cells occurred in the pancreatic lymph nodes. Thus, lack of tolerance in the perinatal period correlated with lack of activation of antigen-specific CD8+ T cells. This work provides evidence for the developmental regulation of peripheral tolerance induction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During αβ thymocyte development, clonotype-independent CD3 complexes are expressed at the cell surface before the pre-T cell receptor (TCR). Signaling through clonotype-independent CD3 complexes is required for expression of rearranged TCRβ genes. On expression of a TCRβ polypeptide chain, the pre-TCR is assembled, and TCRβ locus allelic exclusion is established. We investigated the putative contribution of clonotype-independent CD3 complex signaling to TCRβ locus allelic exclusion in mice single-deficient or double-deficient for CD3ζ/η and/or p56lck. These mice display defects in the expression of endogenous TCRβ genes in immature thymocytes, proportional to the severity of CD3 complex malfunction. Exclusion of endogenous TCRβ VDJ (variable, diversity, joining) rearrangements by a functional TCRβ transgene was severely compromised in the single-deficient and double-deficient mutant mice. In contrast to wild-type mice, most of the CD25+ double-negative (DN) thymocytes of the mutant mice failed to express the TCRβ transgene, suggesting defective expression of the TCRβ transgene similar to endogenous TCRβ genes. In the mutant mice, a proportion of CD25+ DN thymocytes that failed to express the transgene expressed endogenous TCRβ polypeptide chains. Many double-positive cells of the mutant mice coexpressed endogenous and transgenic TCRβ chains or more than one endogenous TCRβ chain. The data suggest that signaling through clonotype-independent CD3 complexes may contribute to allelic exclusion of the TCRβ locus by inducing the expression of rearranged TCRβ genes in CD25+ DN thymocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer/testis (CT) antigens—immunogenic protein antigens that are expressed in testis and a proportion of diverse human cancer types—are promising targets for cancer vaccines. To identify new CT antigens, we constructed an expression cDNA library from a melanoma cell line that expresses a wide range of CT antigens and screened the library with an allogeneic melanoma patient serum known to contain antibodies against two CT antigens, MAGE-1 and NY-ESO-1. cDNA clones isolated from this library identified four CT antigen genes: MAGE-4a, NY-ESO-1, LAGE-1, and CT7. Of these four, only MAGE-4a and NY-ESO-1 proteins had been shown to be immunogenic. LAGE-1 is a member of the NY-ESO-1 gene family, and CT7 is a newly defined gene with partial sequence homology to the MAGE family at its carboxyl terminus. The predicted CT7 protein, however, contains a distinct repetitive sequence at the 5′ end and is much larger than MAGE proteins. Our findings document the immunogenicity of LAGE-1 and CT7 and emphasize the power of serological analysis of cDNA expression libraries in identifying new human tumor antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are two major mechanisms reported to prevent the autoreactivity of islet-specific CD8+ T cells: ignorance and tolerance. When ignorance is operative, naïve autoreactive CD8+ T cells ignore islet antigens and recirculate without causing damage, unless activated by an external stimulus. In the case of tolerance, CD8+ T cells are deleted. Which factor(s) contributes to each particular outcome was previously unknown. Here, we demonstrate that the concentration of self antigen determines which mechanism operates. When ovalbumin (OVA) was expressed at a relatively low concentration in the pancreatic islets of transgenic mice, there was no detectable cross-presentation, and the CD8+ T cell compartment remained ignorant of OVA. In mice expressing higher doses of OVA, cross-presentation was detectable and led to peripheral deletion of OVA-specific CD8+ T cells. When cross-presentation was prevented by reconstituting the bone marrow compartment with cells incapable of presenting OVA, deletional tolerance was converted to ignorance. Thus, the immune system uses two strategies to avoid CD8+ T cell-mediated autoimmunity: for high dose antigens, it deletes autoreactive T cells, whereas for lower dose antigens, it relies on ignorance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental autoimmune encephalomyelitis (EAE) induced with myelin proteolipid protein (PLP) residues 139–151 (HSLGKWLGHPDKF) can be prevented by treatment with a T cell receptor (TCR) antagonist peptide (L144/R147) generated by substituting at the two principal TCR contact residues in the encephalitogenic peptide. The TCR antagonist peptide blocks activation of encephalitogenic Th1 helper cells in vitro, but the mechanisms by which the antagonist peptide blocks EAE in vivo are not clear. Immunization with L144/R147 did not inhibit generation of PLP-(139–151)-specific T cells in vivo. Furthermore, preimmunization with L144/R147 protected mice from EAE induced with the encephalitogenic peptides PLP-(178–191) and myelin oligodendrocyte protein (MOG) residues 92–106 and with mouse myelin basic protein (MBP). These data suggest that the L144/R147 peptide does not act as an antagonist in vivo but mediates bystander suppression, probably by the generation of regulatory T cells. To confirm this we generated T cell lines and clones from animals immunized with PLP-(139–151) plus L144/R147. T cells specific for L144/R147 peptide were crossreactive with the native PLP-(139–151) peptide, produced Th2/Th0 cytokines, and suppressed EAE upon adoptive transfer. These studies demonstrate that TCR antagonist peptides may have multiple biological effects in vivo. One of the principal mechanisms by which these peptides inhibit autoimmunity is by the induction of regulatory T cells, leading to bystander suppression of EAE. These results have important implications for the treatment of autoimmune diseases where there are autopathogenic responses to multiple antigens in the target organ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are developing a gene therapy method of HIV infection based on the constitutive low production of interferon (IFN) β. Peripheral blood lymphocytes (PBL) from HIV-infected patients at different clinical stages of infection were efficiently transduced with the HMB-HbHuIFNβ retroviral vector. The constitutive low production of IFN-β in cultured PBL from HIV-infected patients resulted in a decreased viral production and an enhanced survival of CD4+ cells, and this protective effect was observed only in the PBL derived from donors having a CD4+ cell count above 200 per mm3. In IFN-β-transduced PBL from healthy and from HIV-infected donors, the production of the Th1-type cytokines IFN-γ and interleukin (IL)-12 was enhanced. In IFN-β-transduced PBL from HIV-infected donors, the production of IL-4, IL-6, IL-10, and tumor necrosis factor α was maintained at normal levels, contrary to the increased levels produced by the untransduced PBL. The proliferative response to recall antigens was partially restored in IFN-β-transduced PBL from donors with an impaired antigen response. Thus, in addition to inhibiting HIV replication, IFN-β transduction of PBL from HIV-infected donors improves several parameters of immune function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major histocompatibility complex (MHC) class II molecules displayed clustered patterns at the surfaces of T (HUT-102B2) and B (JY) lymphoma cells characterized by interreceptor distances in the micrometer range as detected by scanning force microscopy of immunogold-labeled antigens. Electron microscopy revealed that a fraction of the MHC class II molecules was also heteroclustered with MHC class I antigens at the same hierarchical level as described by the scanning force microscopy data, after specifically and sequentially labeling the antigens with 30- and 15-nm immunogold beads. On JY cells the estimated fraction of co-clustered HLA II was 0.61, whereas that of the HLA I was 0.24. Clusterization of the antigens was detected by the deviation of their spatial distribution from the Poissonian distribution representing the random case. Fluorescence resonance energy transfer measurements also confirmed partial co-clustering of the HLA class I and II molecules at another hierarchical level characterized by the 2- to 10-nm Förster distance range and providing fine details of the molecular organization of receptors. The larger-scale topological organization of the MHC class I and II antigens may reflect underlying membrane lipid domains and may fulfill significant functions in cell-to-cell contacts and signal transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the important mechanisms of immunosuppression in the tumor-bearing status has been attributed to the down-modulation of the CD3 ζ chain and its associated signaling molecules in T cells. Thus, the mechanism of the disappearance of CD3ζ was investigated in tumor-bearing mice (TBM). The decrease of CD3ζ was observed both in the cell lysate and intact cells. Direct interaction of T cells with macrophages from TBM (TBM-macrophages) induced the decrease of CD3ζ, and depletion of macrophages rapidly restored the CD3ζ expression. We found that treatment of such macrophages with N-acetylcysteine, known as antioxidant compound, prevented the decrease of CD3ζ. Consistent with this result, the addition of oxidative reagents such as hydrogen peroxide and diamide induced the decrease of CD3ζ expression in T cells. Consequently, the loss of CD3ζ resulted in suppression of the antigen-specific T-cell response. These results demonstrate that oxidative stress by macrophages in tumor-bearing status induces abnormality of the T-cell receptor complex by cell interactions with T cells. Therefore, our findings suggest that oxidative stress contributes to the regulation of the expression and function of the T-cell receptor complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mouse CD1(mCD1) molecules have been reported to present two types of antigens: peptides or proteins and the glycolipid α-galactosylceramide. Here, we demonstrate that a protein antigen, chicken ovalbumin (Ova), must be processed to generate peptides presented by mCD1 to CD8+ T cells. The processing and mCD1-mediated presentation of chicken Ova depend on endosomal localization because inhibitors of endosomal acidification and endosomal recycling pathways block T cell reactivity. Furthermore, a cytoplasmic tail mutant of mCD1, which disrupts endosomal localization, has a greatly reduced capacity to present Ova to mCD1 restricted cells. Newly synthesized mCD1 molecules, however, are not required for Ova presentation, suggesting that molecules recycling from the cell surface are needed. Because of these data showing that mCD1 trafficks to endosomes, where it can bind peptides derived from exogenous proteins, we conclude that peptide antigen presentation by mCD1 is likely to be a naturally occurring phenomenon. In competition assays, α-galactosylceramide did not inhibit Ova presentation, and presentation of the glycolipid was not inhibited by excess Ova or the peptide epitope derived from it. This suggests that, although both lipid and peptide presentation may occur naturally, mCD1 may interact differently with these two types of antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cell antigen receptor (TCR) and pre-TCR complexes are composed of clonotypic heterodimers in association with dimers of signal transducing invariant subunits (CD3γ, -δ, -ɛ, and ζ). The role of individual invariant subunits in T cell development has been investigated by generating gene-specific mutations in mice. Mutation of CD3γ, -δ, or ζ results in an incomplete block in development, characterized by reduced numbers of mature T cells that express low levels of TCR. In contrast, mature T cells are absent from CD3ɛ−/− mice, and thymocyte development is arrested at the early CD4−CD8− stage. Although these results suggest that CD3ɛ is essential for pre-TCR and TCR expression/function, their interpretation is complicated by the fact that expression of the CD3γ and CD3δ genes also is reduced in CD3ɛ−/− mice. Thus, it is unclear whether the phenotype of CD3ɛ−/− mice reflects the collective effects of CD3γ, -δ, and -ɛ deficiency. By removing the selectable marker (PGK-NEO) from the targeted CD3ɛ gene via Cre/loxP-mediated recombination, we generated mice that lack CD3ɛ yet retain normal expression of the closely linked CD3γ and CD3δ genes. These (CD3ɛΔ/Δ) mice exhibited an early arrest in T cell development, similar to that of CD3ɛ−/− mice. Moreover, the developmental defect could be rescued by expression of a CD3ɛ transgene. These results identify an essential role for CD3ɛ in T cell development not shared by the CD3γ, CD3δ, or ζ-family proteins and provide further evidence that PGK-NEO can influence the expression of genes in its proximity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the protective role of the membrane-bound HLA-G1 and HLA-G2 isoforms against natural killer (NK) cell cytotoxicity. For this purpose, HLA-G1 and HLA-G2 cDNAs were transfected into the HLA class I-negative human K562 cell line, a known reference target for NK lysis. The HLA-G1 protein, encoded by a full-length mRNA, presents a structure similar to that of classical HLA class I antigens. The HLA-G2 protein, deduced from an alternatively spliced transcript, consists of the α1 domain linked to the α3 domain. In this study we demonstrate that (i) HLA-G2 is present at the cell surface as a truncated class I molecule associated with β2-microglobulin; (ii) NK cytolysis, observed in peripheral blood mononuclear cells and in polyclonal CD3− CD16+ CD56+ NK cells obtained from 20 donors, is inhibited by both HLA-G1 and HLA-G2; this HLA-G-mediated inhibition is reversed by blocking HLA-G with a specific mAb; this led us to the conjecture that HLA-G is the public ligand for NK inhibitory receptors (NKIR) present in all individuals; (iii) the α1 domain common to HLA-G1 and HLA-G2 could mediate this protection from NK lysis; and (iv) when transfected into the K562 cell line, both HLA-G1 and HLA-G2 abolish lysis by the T cell leukemia NK-like YT2C2 clone due to interaction between the HLA-G isoform on the target cell surface and a membrane receptor on YT2C2. Because NKIR1 and NKIR2, known to interact with HLA-G, were undetectable on YT2C2, we conclude that a yet-unknown specific receptor for HLA-G1 and HLA-G2 is present on these cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunological functions were analyzed in mice lacking granulocyte/macrophage colony-stimulating factor (GM-CSF). The response of splenic T cells to allo-antigens, anti-mouse CD3 mAb, interleukin 2 (IL-2), or concanavalin A was comparable in GM-CSF +/+ and GM-CSF −/− mice. To investigate the responses of CD8+ and CD4+ T cells against exogenous antigens, mice were immunized with ovalbumin peptide or with keyhole limpet hemocyanin (KLH). Cytotoxic CD8+ T cells with specificity for ovalbumin peptide could not be induced in GM-CSF −/− mice. After immunization with KLH, there was a delay in IgG generation, particularly IgG2a, in GM-CSF −/− mice. Purified CD4+ T cells from GM-CSF −/− mice immunized with KLH showed impaired proliferative responses and produced low amounts of interferon-γ (IFN-γ) and IL-4 when KLH-pulsed B cells or spleen cells were used as antigen presenting cells (APC). When enriched dendritic cells (DC) were used as APC, CD4+ T cells from GM-CSF −/− mice proliferated as well as those from GM-CSF +/+ mice and produced high amounts of IFN-γ and IL-4. To analyze the rescue effect of DC on CD4+ T cells, supernatants from (i) CD4+ T cells cultured with KLH-pulsed DC or (ii) DC cultured with recombinant GM-CSF were transferred to cultures of CD4+ T cells and KLH-pulsed spleen cells from GM-CSF −/− mice. Supernatants from both DC sources contained a factor or factors that restored proliferative responses and IFN-γ production of CD4+ T cells from GM-CSF −/− mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerable evidence indicates that CD4+ T cells are important in the pathogenesis of rheumatoid arthritis (RA), but the antigens recognized by these T cells in the joints of patients remain unclear. Previous studies have suggested that type II collagen (CII) and human cartilage gp39 (HCgp39) are among the most likely synovial antigens to be involved in T cell stimulation in RA. Furthermore, experiments have defined dominant peptide determinants of these antigens when presented by HLA-DR4, the most important RA-associated HLA type. We used fluorescent, soluble peptide–DR4 complexes (tetramers) to detect synovial CD4+ T cells reactive with CII and HCgp39 in DR4+ patients. The CII-DR4 complex bound in a specific manner to CII peptide-reactive T cell hybridomas, but did not stain a detectable fraction of synovial CD4+ cells. A background percentage of positive cells (<0.2%) was not greater in DR4 (DRB1*0401) patients compared with those without this disease-associated allele. Similar results were obtained with the gp39-DR4 complex for nearly all RA patients. In a small subset of DR4+ patients, however, the percentage of synovial CD4+ cells binding this complex was above background and could not be attributed to nonspecific binding. These studies demonstrate the potential for peptide–MHC class II tetramers to be used to track antigen-specific T cells in human autoimmune diseases. Together, the results also suggest that the major oligoclonal CD4+ T cell expansions present in RA joints are not specific for the dominant CII and HCgp39 determinants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research throughout the last century has led to a consensus as to the strategy of the humoral component of the immune system. The essence is that, for killing, the antibody molecule activates additional systems that respond to antibody–antigen union. We now report that the immune system seems to have a previously unrecognized chemical potential intrinsic to the antibody molecule itself. All antibodies studied, regardless of source or antigenic specificity, can convert molecular oxygen into hydrogen peroxide, thereby potentially aligning recognition and killing within the same molecule. Aside from pointing to a new chemical arm for the immune system, these results may be important to the understanding of how antibodies evolved and what role they may play in human diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transgenic mice expressing human HOX11 in B lymphocytes die prematurely from lymphomas that initiate in the spleen and frequently disseminate to distant sites. Preneoplastic hematopoiesis in these mice is unperturbed. We now report that expression of the HOX11 transgene does not affect the ability of dendritic cells (DCs) to process and present foreign peptides and activate antigen-specific T cell responses. We also show that nontransgenic DCs presenting peptides derived from the human HOX11 protein are highly efficient stimulators of autologous T cells, whereas transgenic T cells are nonresponsive to peptides derived from the HOX11 transgene and the murine Meis1 protein. HOX11 transgenic mice thus show normal development of tolerance to immunogenic antigens expressed throughout B cell maturation. DCs pulsed with cell lysates prepared from lymphomas, obtained from HOX11 transgenic mice with terminal lymphoma, activate T cells from nontransgenic and premalignant transgenic mice, whereas T cells isolated from lymphomatous transgenic mice are nonresponsive to autologous tumor cell antigens. These data indicate that HOX11 lymphoma cells express tumor-rejection antigens that are recognized as foreign in healthy transgenic mice and that lymphomagenesis is associated with the induction of anergy to tumor antigen-specific T cells. These findings are highly relevant for the development of immunotherapeutic protocols for the treatment of lymphoma.