94 resultados para Antidepressant-like activity
em National Center for Biotechnology Information - NCBI
Resumo:
Nm23 genes, which encode nucleoside diphosphate kinases, have been implicated in suppressing tumor metastasis. The motility of human breast carcinoma cells can be suppressed by transfection with wild-type nm23-H1, but not by transfections with two nm23-H1 mutants, nm23-H1S12OG and nm23-H1P96S. Here we report that nm23-H1 can transfer a phosphate from its catalytic histidine to aspartate or glutamate residues on 43-kDa membrane proteins. One of the 43-kDa membrane proteins was not phosphorylated by either nm23-H1P96S or nm23-H1S120G, and another was phosphorylated much more slowly by nm23-H1P96S and by nm23-H1S120G than by wild-type nm23-H1. Nm23-H1 also can transfer phosphate from its catalytic histidine to histidines on ATP-citrate lyase and succinic thiokinase. The rates of phosphorylation of ATP-citrate lyase by nm23-H1S120G and nm23-H1P96S were similar to that by wild-type nm23-H1. The rate of phosphorylation of succinic thiokinase by nm23-H1S120 was similar to that by wild-type nm23-H1, and the rate of phosphorylation of succinic thiokinase by nm23-H1P96S was about half that by wild-type nm23-H1. Thus, the transfer of phosphate from nm23-H1 to aspartates or glutamates on other proteins appears to correlate better with the suppression of motility than does the transfer to histidines.
Resumo:
The brain serotonin (5-hydroxytryptamine; 5-HT) system is a powerful modulator of emotional processes and a target of medications used in the treatment of psychiatric disorders. To evaluate the contribution of serotonin 5-HT1A receptors to the regulation of these processes, we have used gene-targeting technology to generate 5-HT1A receptor-mutant mice. These animals lack functional 5-HT1A receptors as indicated by receptor autoradiography and by resistance to the hypothermic effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Homozygous mutants display a consistent pattern of responses indicative of elevated anxiety levels in open-field, elevated-zero maze, and novel-object assays. Moreover, they exhibit antidepressant-like responses in a tail-suspension assay. These results indicate that the targeted disruption of the 5-HT1A receptor gene leads to heritable perturbations in the serotonergic regulation of emotional state. 5-HT1A receptor-null mutant mice have potential as a model for investigating mechanisms through which serotonergic systems modulate affective state and mediate the actions of psychiatric drugs.
Resumo:
The effects of pantethine, glutathione, and selected chemical reagents on the anti-aggregation activity of α-crystallin was evaluated. Protein aggregation was monitored by light scattering of solutions of denatured βL-crystallin or alcohol dehydrogenase (ADH). The ratios of βL-crystallin/α-crystallin and ADH/α-crystallin were adjusted so that partial inhibition of protein aggregation at 60°C or 37°C, respectively, was observed and modulation of the chaperone action of α-crystallin could be evaluated easily with selected endogenous metabolites. Enhancement of the anti-aggregation activity in the βL-crystallin assay was strongest with pantethine, which appeared to interact with α-crystallin. Enhancement of the anti-aggregation activity in the ADH assay was strongest with glutathione which appeared to interact with ADH. The results indicated that the products of common metabolic pathways can modulate the chaperone-like effects of α-crystallin on protein aggregation.
Resumo:
We have detected an endoribonucleolytic activity in human cell extracts that processes the Escherichia coli 9S RNA and outer membrane protein A (ompA) mRNA with the same specificity as RNase E from E. coli. The human enzyme was partially purified by ion-exchange chromatography, and the active fractions contained a protein that was detected with antibodies shown to recognize E. coli RNase E. RNA containing four repeats of the destabilizing motif AUUUA and RNA from the 3' untranslated region of human c-myc mRNA were also found to be cleaved by E. coli RNase E and its human counterpart in a fashion that may suggest a role of this activity in mammalian mRNA decay. It was also found that RNA containing more than one AUUUA motif was cleaved more efficiently than RNA with only one or a mutated motif. This finding of a eukaryotic endoribonucleolytic activity corresponding to RNase E indicates an evolutionary conservation of the components of mRNA degradation systems.
Resumo:
The 1,3–1,4-β-glucanase from Bacillus macerans (wtGLU) and the 1,4-β-xylanase from Bacillus subtilis (wtXYN) are both single-domain jellyroll proteins catalyzing similar enzymatic reactions. In the fusion protein GluXyn-1, the two proteins are joined by insertion of the entire XYN domain into a surface loop of cpMAC-57, a circularly permuted variant of wtGLU. GluXyn-1 was generated by protein engineering methods, produced in Escherichia coli and shown to fold spontaneously and have both enzymatic activities at wild-type level. The crystal structure of GluXyn-1 was determined at 2.1 Å resolution and refined to R = 17.7% and R(free) = 22.4%. It shows nearly ideal, native-like folding of both protein domains and a small, but significant hinge bending between the domains. The active sites are independent and accessible explaining the observed enzymatic activity. Because in GluXyn-1 the complete XYN domain is inserted into the compact folding unit of GLU, the wild-type-like activity and tertiary structure of the latter proves that the folding process of GLU does not depend on intramolecular interactions that are short-ranged in the sequence. Insertion fusions of the GluXyn-1 type may prove to be an easy route toward more stable bifunctional proteins in which the two parts are more closely associated than in linear end-to-end protein fusions.
Resumo:
Inhibitors of the protease of HIV-1 have been used successfully for the treatment of HIV-1-infected patients and AIDS disease. We tested whether these protease inhibitory drugs exerted effects in addition to their antiviral activity. Here, we show in mice infected with lymphocytic choriomeningitis virus and treated with the HIV-1 protease inhibitor ritonavir a marked inhibition of antiviral cytotoxic T lymphocyte (CTL) activity and impaired major histocompatibility complex class I-restricted epitope presentation in the absence of direct effects on lymphocytic choriomeningitis virus replication. A potential molecular target was found: ritonavir selectively inhibited the chymotrypsin-like activity of the 20S proteasome. In view of the possible role of T cell-mediated immunopathology in AIDS pathogenesis, the two mechanisms of action (i.e., reduction of HIV replication and impairment of CTL responses) may complement each other beneficially. Thus, the surprising ability of ritonavir to block the presentation of antigen to CTLs may possibly contribute to therapy of HIV infections but potentially also to the therapy of virally induced immunopathology, autoimmune diseases, and transplantation reactions.
Resumo:
Neurotrophins, secreted in an activity-dependent manner, are thought to be involved in the activity-dependent refinement of synaptic connections. Here we demonstrate that in hippocampal neurons and the rat pheochromocytoma cell line PC12 application of exogenous neurotrophins induces secretion of neurotrophins, an effect that is mediated by the activation of tyrosine kinase neurotrophin receptors (Trks). Like activity-dependent secretion of neurotrophins, neurotrophin-induced neurotrophin secretion requires mobilization of calcium from intracellular stores. Because neurotrophins are likely to be released from both dendrites and axons, neurotrophin-induced neurotrophin release represents a potential positive feedback mechanism, contributing to the reinforcement and stabilization of synaptic connections.
Resumo:
FKBP52 (HSP56, p59, HBI) is the 59-kDa immunosuppressant FK506-binding protein and has peptidyl prolyl isomerase as well as a chaperone-like activity in vitro. FKBP52 associates with the heat shock protein HSP90 and is included in the steroid hormone receptor complexes in vivo. FKBP52 possesses a well conserved phosphorylation site for casein kinase II (CK2) that was previously shown to be associated with HSP90. Here we examined whether FKBP52 is phosphorylated by CK2 both in vivo and in vitro. Recombinant rabbit FKBP52 was phosphorylated by purified CK2. We expressed and purified deletion mutants of FKBP52 to determine the site(s) phosphorylated by CK2. Thr-143 in the hinge I region was identified as the major phosphorylation site for CK2. A synthetic peptide corresponding to this region was phosphorylated by CK2, and the peptide competitively inhibited the phosphorylation of other substrates by CK2. The [32P]phosphate labeling of FKBP52-expressing cells revealed that the same site is also phosphorylated in vivo. FK506 binding to FKBP52 did not affect the phosphorylation by CK2 and, conversely, the FK506-binding activity of FKBP52 was not affected by the phosphorylation. Most importantly, CK2-phosphorylated FKBP52 did not bind to HSP90. These results indicate that CK2 phosphorylates FKBP52 both in vitro and in vivo and thus may regulate the protein composition of chaperone-containing complexes such as those of steroid receptors and certain protein kinases.
Resumo:
The process of human erythrocyte invasion by Plasmodium falciparum parasites involves a calcium-dependent serine protease with properties consistent with a subtilisin-like activity. This enzyme achieves the last crucial maturation step of merozoite surface protein 1 (MSP1) necessary for parasite entry into the host erythrocyte. In eukaryotic cells, such processing steps are performed by subtilisin-like maturases, known as proprotein convertases. In an attempt to characterize the MSP1 maturase, we have identified a gene that encodes a P. falciparum subtilisin-like protease (PfSUB2) whose deduced active site sequence resembles more bacterial subtilisins. Therefore, we propose that PfSUB2 belongs to a subclass of eukaryotic subtilisins different from proprotein convertases. Pfsub2 is expressed during merozoite differentiation and encodes an integral membrane protein localized in the merozoite dense granules, a secretory organelle whose contents are believed to participate in a late step of the erythrocyte invasion. PfSUB2’s subcellular localization, together with its predicted enzymatic properties, leads us to propose that PfSUB2 could be responsible for the late MSP1 maturation step and thus is an attractive target for the development of new antimalarial drugs.
Resumo:
Cytosolic proteolysis is carried out predominantly by the proteasome. We show that a large oligopeptidase, tripeptidylpeptidase II (TPPII), can compensate for compromised proteasome activity. Overexpression of TPPII is sufficient to prevent accumulation of polyubiquitinated proteins and allows survival of EL-4 cells at otherwise lethal concentrations of the covalent proteasome inhibitor NLVS (NIP-leu-leu-leu-vinylsulfone). Elevated TPPII activity also partially restores peptide loading of MHC molecules. Purified proteasomes from adapted cells lack the chymotryptic-like activity, but still degrade longer peptide substrates via residual activity of their Z subunits. However, growth of adapted cells depends on induction of other proteolytic activities. Therefore, cytosolic oligopeptidases such as TPPII normalize rates of intracellular protein breakdown required for normal cellular function and viability.
Resumo:
The est1 mutant was previously identified because it is defective in telomere maintenance and displays a senescent phenotype. To see if Est1 might be a component of yeast telomerase, we examined immunoprecipitated Est1. The yeast telomerase RNA Tlc1 specifically coprecipitated with Est1. Furthermore, the Est1 immunoprecipitates contained a telomerase-like activity. As expected for yeast telomerase, the activity elongated telomeric primers, it required dGTP and dTTP but not dATP or dCTP, and it was sensitive to RNase A. Further evidence suggesting that the activity was telomerase was obtained from experiments using a TLC1-1 mutant strain, which has a mutant telomerase template containing dG residues. The activity immunoprecipitated from TLC1-1 mutant strains incorporated 32P-labeled dCTP, while activity from TLC1 strains did not. Use of different telomeric primer substrates revealed two distinguishable telomerase-like activities: one was dependent on TLC1, and one was not. The TLC1-independent activity may be due to a second yeast telomerase RNA, or it may be some other kind of activity.
Resumo:
Many hormone and cytokine receptors are crosslinked by their specific ligands, and multimerization is an essential step leading to the generation of a signal. In the case of the tumor necrosis factor (TNF) receptors (TNF-Rs), antibody-induced crosslinking is sufficient to trigger a cytolytic effect. However, the quaternary structural requirements for signaling--i.e., the formation of dimers, trimers, or higher-order multimers--have remained obscure. Moreover, it has not been clear whether the 55-kDa or 75-kDa TNF-R is responsible for initiation of cytolysis. We reasoned that an obligate receptor dimer, targeted to the plasma membrane, might continuously signal the presence of TNF despite the actual absence of the ligand. Such a molecule, inserted into an appropriate vector, could be used to project receptor-specific "TNF-like" activity to specific cells and tissues in vivo. Accordingly, we constructed sequences encoding chimeric receptors in which the extracellular domain of the mouse erythropoietin receptor (Epo-R) was fused to the "stem," transmembrane domain, and cytoplasmic domain of the two mouse TNF-Rs. Thus, the Epo-R group was used to drive dimerization of the TNF-R cytoplasmic domain. These chimeric proteins were well expressed in a variety of cell lines and bound erythropoietin at the cell surface. Both the 55-kDa and the 75-kDa Epo/TNF-R chimeras exerted a constitutive cytotoxic effect detected by cotransfection or clonogenic assay. Thus, despite the lack of structural homology between the cytoplasmic domains of the two TNF-Rs, a similar signaling endpoint was observed. Moreover, dimerization (rather than trimerization or higher-order multimerization) was sufficient for elicitation of a biological response.
Resumo:
The transactivation activity of the p53 tumor suppressor protein is critical for regulating cell growth and apoptosis. We describe the identification of a transcription factor that is functionally similar to p53 and contains the same DNA binding and transcription activities specific for the p53 responsive DNA element (p53RE). This protein was highly purified through chromatography from HeLa cell extracts. The purified protein was able to bind specifically to the p53RE derived from a p21waf1 promoter and to stimulate p53RE-dependent transcription but not basal transcription in vitro. Its DNA-binding activity was inhibited by the wild type but not mutant p53RE-containing DNA oligomers. Also, this p53RE-binding activity was found in human p53 null Saos-2 osteosarcoma and H1299 small cell lung carcinoma cells. Interestingly, this activity exhibited a p53RE sequence preference that was distinct from the p53 protein. The activity is neither p53 nor p73, because anti-p53 or anti-73 antibodies were unable to detect this purified protein nor were the antibodies able to alter the p53-like activity, the p53RE-protein complex. These results demonstrate that, besides p73, an additional p53-like protein exists in cells, which is named NBP for non-p53, p53RE binding protein.
Resumo:
Endothelial monocyte-activating polypeptide II (EMAP II) is a proinflammatory cytokine and a chemoattractant for monocytes. We show here that, in the mouse embryo, EMAP II mRNA was most abundant at sites of tissue remodeling where many apoptotic cells could be detected by terminal deoxynucleotidyltransferase-mediated dUTP end labeling. Removal of dead cells is known to require macrophages, and these were found to colocalize with areas of EMAP II mRNA expression and programmed cell death. In cultured cells, post-translational processing of pro-EMAP II protein to the mature released EMAP II form (23 kDa) occurred coincidentally with apoptosis. Cleavage of pro-EMAP II could be abrogated in cultured cells by using a peptide-based inhibitor, which competes with the ASTD cleavage site of pro-EMAP II. Our results suggest that the coordinate program of cell death includes activation of a caspase-like activity that initiates the processing of a cytokine responsible for macrophage attraction to the sites of apoptosis.
Resumo:
Salt and water secretion from intestinal epithelia requires enhancement of anion permeability across the apical membrane of Cl− secreting cells lining the crypt, the secretory gland of the intestine. Paneth cells located at the base of the small intestinal crypt release enteric defensins (cryptdins) apically into the lumen. Because cryptdins are homologs of molecules known to form anion conductive pores in phospholipid bilayers, we tested whether these endogenous antimicrobial peptides could act as soluble inducers of channel-like activity when applied to apical membranes of intestinal Cl− secreting epithelial cells in culture. Of the six peptides tested, cryptdins 2 and 3 stimulated Cl− secretion from polarized monolayers of human intestinal T84 cells. The response was reversible and dose dependent. In contrast, cryptdins 1, 4, 5, and 6 lacked this activity, demonstrating that Paneth cell defensins with very similar primary structures may exhibit a high degree of specificity in their capacity to elicit Cl− secretion. The secretory response was not inhibited by pretreatment with 8-phenyltheophyline (1 μM), or dependent on a concomitant rise in intracellular cAMP or cGMP, indicating that the apically located adenosine and guanylin receptors were not involved. On the other hand, cryptdin 3 elicited a secretory response that correlated with the establishment of an apically located anion conductive channel permeable to carboxyfluorescein. Thus cryptdins 2 and 3 can selectively permeabilize the apical cell membrane of epithelial cells in culture to elicit a physiologic Cl− secretory response. These data define the capability of cryptdins 2 and 3 to function as novel intestinal secretagogues, and suggest a previously undescribed mechanism of paracrine signaling that in vivo may involve the reversible formation of ion conductive channels by peptides released into the crypt microenvironment.