4 resultados para Anticardiolipin

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antiphospholipid antibodies, including anticardiolipin antibodies (ACA), are strongly associated with recurrent thrombosis in patients with the antiphospholipid syndrome (APS). To date, reports about the binding specificities of ACA and their role(s) in causing and/or sustaining thrombosis in APS are conflicting and controversial. The plasmas of patients with APS, usually containing a mixture of autoantibodies, vary in binding specificity for different phospholipids/cofactors and vary in in vitro lupus anticoagulant activity. Although in vivo assays that allow assessment of the pathogenic procoagulant activity of patient autoantibodies have recently been developed, the complex nature of the mixed species prevented determination of the particular species responsible for in vivo thrombosis. We have generated two human IgG monoclonal ACA from an APS patient with recurrent thrombosis. Both bound to cardiolipin in the presence of 10% bovine serum, but not in its absence, and both were reactive against phosphatidic acid, but were nonreactive against purified human beta-2 glycoprotein 1, DNA, heparan sulfate, or four other test antigens. Both monoclonal autoantibodies lacked lupus anticoagulant activity and did not inhibit prothrombinase activity. Remarkably, one of the monoclonal antibodies has thrombogenic properties when tested in an in vivo mouse model. This finding provides the first direct evidence that a particular antiphospholipid antibody specificity may contribute to in vivo thrombosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Circulating autoantibodies to phospholipids (aPLs), such as cardiolipin (CL), are found in patients with antiphospholipid antibody syndrome (APS). We recently demonstrated that many aPLs bound to CL only after it had been oxidized (OxCL), but not to a reduced CL analogue that could not undergo oxidation. We now show that the neoepitopes recognized by some aPLs consist of adducts formed between breakdown products of oxidized phospholipid and associated proteins, such as β2 glycoprotein 1 (β2GP1). Addition of human β2GP1, polylysine, native low-density lipoprotein, or apolipoprotein AI to OxCL-coated wells increased the anticardiolipin antibody (aCL) binding from APS sera that first had been diluted so that no aCL binding to OxCL could be detected. No increase in aCL binding was observed when these proteins were added to wells coated with reduced CL. The ability of β2GP1, polylysine, or low-density lipoprotein to be a “cofactor” for aCL binding to OxCL was greatly reduced when the proteins were methylated. Incubation of β2GP1 with oxidized 1-palmitoyl-2-linoleyl-[1-14C]-phosphatidylcholine (PC), but not with dipalmitoyl-[1-14C]-PC, led to formation of covalent adducts with β2GP1 recognized by APS sera. These data suggest that the reactive groups of OxCL, such as aldehydes generated during the decomposition of oxidized polyunsaturated fatty acids, form covalent adducts with β2GP1 (and other proteins) and that these are epitopes for aCLs. Knowledge that the epitopes recognized by many aPLs are adducts of oxidized phospholipid and associated proteins, including β2GP1, may give new insights into the pathogenic events underlying the clinical manifestations of APS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anticardiolipin (anti-CL) antibodies, diagnostic for antiphospholipid antibody syndrome, are associated with increased risks of venous and arterial thrombosis. Because CL selectively enhances activated protein C/protein S-dependent anticoagulant activities in purified systems and because CL is not known to be a normal plasma component, we searched for CL in plasma. Plasma lipid extracts [chloroform/methanol (2:1, vol/vol)] were subjected to analyses by using TLC, analytical HPLC, and MS. A plasma lipid component was purified that was indistinguishable from reference CL (M:1448). When CL in 40 fasting plasma lipid extracts (20 males, 20 females) was quantitated by using HPLC, CL (mean ± SD) was 14.9 ± 3.7 μg/ml (range 9.1 to 24.2) and CL was not correlated with phosphatidylserine (3.8 ± 1.7 μg/ml), phosphatidylethanolamine (64 ± 20 μg/ml), or choline-containing phospholipid (1,580 ± 280 μg/ml). Based on studies of fasting blood donors, CL (≥94%) was recovered in very low density, low density, and high density lipoproteins (11 ± 5.3%, 67 ± 11.0%, and 17 ± 10%, respectively), showing that the majority of plasma CL (67%) is in low density lipoprotein. Analysis of relative phospholipid contents of lipoproteins indicated that high density lipoprotein is selectively enriched in CL and phosphatidylethanolamine. These results shows that CL is a normal plasma component and suggest that the epitopes of antiphospholipid antibodies could include CL or oxidized CL in lipoproteins or in complexes with plasma proteins (e.g., β2-glycoprotein I, prothrombin, protein C, or protein S) or with platelet or endothelial surface proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anticardiolipin (aCL) autoantibodies are associated with thrombosis, recurrent fetal loss, and thrombocytopenia. Only aCL found in autoimmune disease require the participation of the phospholipid binding plasma protein β2 glycoprotein I (β2GPI) for antibody binding and now are called anti-β2GPI. The antigenic specificity of aCL affinity purified from 11 patients with high titers was evaluated in an effort to better understand the pathophysiology associated with aCL. Seven different recombinant domain-deleted mutants of human β2GPI, and full length human β2GPI (wild-type), were used in competition assays to inhibit the autoantibodies from binding to immobilized wild-type β2GPI. Only those domain-deleted mutants that contained domain 1 inhibited the binding to immobilized wild-type β2GPI from all of the patients. The domain-deleted mutants that contained domain 1 inhibited all aCL in a similar but not identical pattern, suggesting that these aCL recognize a similar, but distinguishable, epitope(s) present on domain 1.