25 resultados para Anthraquinone dyes
em National Center for Biotechnology Information - NCBI
Peptide nucleic acid–DNA duplexes: Long range hole migration from an internally linked anthraquinone
Resumo:
The discovery that peptide nucleic acids (PNA) mimic DNA and RNA by forming complementary duplex structures following Watson–Crick base pairing rules opens fields in biochemistry, diagnostics, and medicine for exploration. Progress requires the development of modified PNA duplexes having unique and well defined properties. We find that anthraquinone groups bound to internal positions of a PNA oligomer intercalate in the PNA–DNA hybrid. Their irradiation with near-UV light leads to electron transfer and oxidative damage at remote GG doublets on the complementary DNA strand. This behavior mimics that observed in related DNA duplexes and provides the first evidence for long range electron (hole) transport in PNA–DNA hybrid. Analysis of the mechanism for electron transport supports hole hopping.
Resumo:
Specific mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), the most common autosomal recessive fatal genetic disease of Caucasians, result in the loss of epithelial cell adenosine 3',5'-cyclic-monophosphate (cAMP)-stimulated Cl- conductance. We show that the influx of a fluorescent dye, dihydrorhodamine 6G (dR6G), is increased in cells expressing human CFTR after retrovirus- and adenovirus-mediated gene transfer. dR6G influx is stimulated by cAMP and is inhibited by antagonists of cAMP action. Dye uptake is ATP-dependent and inhibited by Cl- removal or the addition of 10 mM SCN-. Increased staining is associated with functional activation of CFTR Cl- permeability. dR6G staining enables both the fluorescent assessment of CFTR function and the identification of successfully corrected cells after gene therapy.
Resumo:
Chromophore-assisted light inactivation (CALI) offers the only method capable of modulating specific protein activities in localized regions and at particular times. Here, we generalize CALI so that it can be applied to a wider range of tasks. Specifically, we show that CALI can work with a genetically inserted epitope tag; we investigate the effectiveness of alternative dyes, especially fluorescein, comparing them with the standard CALI dye, malachite green; and we study the relative efficiencies of pulsed and continuous-wave illumination. We then use fluorescein-labeled hemagglutinin antibody fragments, together with relatively low-power continuous-wave illumination to examine the effectiveness of CALI targeted to kinesin. We show that CALI can destroy kinesin activity in at least two ways: it can either result in the apparent loss of motor activity, or it can cause irreversible attachment of the kinesin enzyme to its microtubule substrate. Finally, we apply this implementation of CALI to an in vitro system of motor proteins and microtubules that is capable of self-organized aster formation. In this system, CALI can effectively perturb local structure formation by blocking or reducing the degree of aster formation in chosen regions of the sample, without influencing structure formation elsewhere.
Resumo:
We present a helical unwinding assay for reversibly binding DNA ligands that uses closed circular DNA, topoisomerase I (Topo I), and two-dimensional agarose gel electrophoresis. Serially diluted Topo I relaxation reactions at constant DNA/ligand ratio are performed, and the resulting apparent unwinding of the closed circular DNA is used to calculate both ligand unwinding angle (φ) and intrinsic association constant (Ka). Mathematical treatment of apparent unwinding is formally analogous to that of apparent extinction coefficient data for optical binding titrations. Extrapolation to infinite DNA concentration yields the true unwinding angle of a given ligand and its association constant under Topo I relaxation conditions. Thus this assay delivers simultaneous structural and thermodynamic information describing the ligand–DNA complex. The utility of this assay has been demonstrated by using calichearubicin B (CRB), a synthetic hybrid molecule containing the anthraquinone chromophore of (DA) and the carbohydrate domain of calicheamicin γ1I. The unwinding angle for CRB calculated by this method is −5.3 ± 0.5°. Its Ka value is 0.20 × 106 M−1. For comparison, the unwinding angles of ethidium bromide and DA have been independently calculated, and the results are in agreement with canonical values for these compounds. Although a stronger binder to selected sites, CRB is a less potent unwinder than its parent compound DA. The assay requires only small amounts of ligand and offers an attractive option for analysis of DNA binding by synthetic and natural compounds.
Resumo:
The computations involved in the processing of a visual scene invariably involve the interactions among neurons throughout all of visual cortex. One hypothesis is that the timing of neuronal activity, as well as the amplitude of activity, provides a means to encode features of objects. The experimental data from studies on cat [Gray, C. M., Konig, P., Engel, A. K. & Singer, W. (1989) Nature (London) 338, 334–337] support a view in which only synchronous (no phase lags) activity carries information about the visual scene. In contrast, theoretical studies suggest, on the one hand, the utility of multiple phases within a population of neurons as a means to encode independent visual features and, on the other hand, the likely existence of timing differences solely on the basis of network dynamics. Here we use widefield imaging in conjunction with voltage-sensitive dyes to record electrical activity from the virtually intact, unanesthetized turtle brain. Our data consist of single-trial measurements. We analyze our data in the frequency domain to isolate coherent events that lie in different frequency bands. Low frequency oscillations (<5 Hz) are seen in both ongoing activity and activity induced by visual stimuli. These oscillations propagate parallel to the afferent input. Higher frequency activity, with spectral peaks near 10 and 20 Hz, is seen solely in response to stimulation. This activity consists of plane waves and spiral-like waves, as well as more complex patterns. The plane waves have an average phase gradient of ≈π/2 radians/mm and propagate orthogonally to the low frequency waves. Our results show that large-scale differences in neuronal timing are present and persistent during visual processing.
Resumo:
The discrepancy between the structural longitudinal organization of the parallel-fiber system in the cerebellar cortex and the functional mosaic-like organization of the cortex has provoked controversial theories about the flow of information in the cerebellum. We address this issue by characterizing the spatiotemporal organization of neuronal activity in the cerebellar cortex by using optical imaging of voltage-sensitive dyes in isolated guinea-pig cerebellum. Parallel-fiber stimulation evoked a narrow beam of activity, which propagated along the parallel fibers. Stimulation of the mossy fibers elicited a circular, nonpropagating patch of synchronized activity. These results strongly support the hypothesis that a beam of parallel fibers, activated by a focal group of granule cells, fails to activate the Purkinje cells along most of its length. It is thus the ascending axon of the granule cell, and not its parallel branches, that activates and defines the basic functional modules of the cerebellar cortex.
Resumo:
We have investigated the dynamic behavior of cytoskeletal fine structure in the lamellipodium of nerve growth cones using a new type of polarized light microscope (the Pol-Scope). Pol-Scope images display with exquisite resolution and definition birefringent fine structures, such as filaments and membranes, without having to treat the cell with exogenous dyes or fluorescent labels. Furthermore, the measured birefringence of protein fibers in the thin lamellipodial region can be interpreted in terms of the number of filaments in the bundles. We confirmed that birefringent fibers are actin-based using conventional fluorescence-labeling methods. By recording movies of time-lapsed Pol-Scope images, we analyzed the creation and dynamic composition of radial fibers, filopodia, and intrapodia in advancing growth cones. The strictly quantitative information available in time-lapsed Pol-Scope images confirms previously deduced behavior and provides new insight into the architectural dynamics of filamentous actin.
Resumo:
Bone-forming cells are organized in a multicellular network interconnected by gap junctions. In these cells, gap junctions are formed by connexin43 (Cx43) and connexin45 (Cx45). Cx43 gap junctions form pores that are more permeable to negatively charged dyes such as Lucifer yellow and calcein than are Cx45 pores. We studied whether altering gap junctional communication by manipulating the relative expression of Cx43 and Cx45 affects the osteoblast phenotype. Transfection of Cx45 in cells that express primarily Cx43 (ROS 17/2.8 and MC3T3-E1) decreased both dye transfer and expression of osteocalcin (OC) and bone sialoprotein (BSP), genes pivotal to bone matrix formation and calcification. Conversely, transfection of Cx43 into cells that express predominantly Cx45 (UMR 106–01) increased both cell coupling and expression of OC and BSP. Transient cotransfection of promoter–luciferase constructs and connexin expression vectors demonstrated that OC and BSP gene transcription was down-regulated by Cx45 cotransfection in ROS 17/2.8 and MC3T3-E1 cells, in association with a decrease in dye coupling. Conversely, cotransfection of Cx43 in UMR 106–01 cells up-regulated OC and BSP gene transcription. Activity of other less specific osteoblast promoters, such as osteopontin and osteonectin, was less sensitive to changes in gap junctional communication. Thus, altering gap junctional permeability by manipulating the expression of Cx43 and Cx45 in osteoblastic cells alters transcriptional activity of osteoblast-specific promoters, presumably via modulation of signals that can diffuse from cell to cell. A communicating intercellular network is required for the full elaboration of a differentiated osteoblastic phenotype.
Resumo:
We report single-molecule folding studies of a small, single-domain protein, chymotrypsin inhibitor 2 (CI2). CI2 is an excellent model system for protein folding studies and has been extensively studied, both experimentally (at the ensemble level) and theoretically. Conformationally assisted ligation methodology was used to synthesize the proteins and site-specifically label them with donor and acceptor dyes. Folded and denatured subpopulations were observed by fluorescence resonance energy transfer (FRET) measurements on freely diffusing single protein molecules. Properties of these subpopulations were directly monitored as a function of guanidinium chloride concentration. It is shown that new information about different aspects of the protein folding reaction can be extracted from such subpopulation properties. Shifts in the mean transfer efficiencies are discussed, FRET efficiency distributions are translated into potentials, and denaturation curves are directly plotted from the areas of the FRET peaks. Changes in stability caused by mutation also are measured by comparing pseudo wild-type CI2 with a destabilized mutant (K17G). Current limitations and future possibilities and prospects for single-pair FRET protein folding investigations are discussed.
Resumo:
A definite diagnosis of prion diseases such as Creutzfeldt–Jakob disease (CJD) relies on the detection of pathological prion protein (PrPSc). However, no test for PrPSc in cerebrospinal fluid (CSF) has been available thus far. Based on a setup for confocal dual-color fluorescence correlation spectroscopy, a technique suitable for single molecule detection, we developed a highly sensitive detection method for PrPSc. Pathological prion protein aggregates were labeled by specific antibody probes tagged with fluorescent dyes, resulting in intensely fluorescent targets, which were measured by dual-color fluorescence intensity distribution analysis in a confocal scanning setup. In a diagnostic model system, PrPSc aggregates were detected down to a concentration of 2 pM PrPSc, corresponding to an aggregate concentration of approximately 2 fM, which was more than one order of magnitude more sensitive than Western blot analysis. A PrPSc-specific signal could also be detected in a number of CSF samples from patients with CJD but not in control samples, providing the basis for a rapid and specific test for CJD and other prion diseases. Furthermore, this method could be adapted to the sensitive detection of other disease-associated amyloid aggregates such as in Alzheimer's disease.
Resumo:
The reaction center from Rhodobacter sphaeroides uses light energy for the reduction and protonation of a quinone molecule, QB. This process involves the transfer of two protons from the aqueous solution to the protein-bound QB molecule. The second proton, H+(2), is supplied to QB by Glu-L212, an internal residue protonated in response to formation of QA− and QB−. In this work, the pathway for H+(2) to Glu-L212 was studied by measuring the effects of divalent metal ion binding on the protonation of Glu-L212, which was assayed by two types of processes. One was proton uptake from solution after the one-electron reduction of QA (DQA→D+QA−) and QB (DQB→D+QB−), studied by using pH-sensitive dyes. The other was the electron transfer kAB(1) (QA−QB→QAQB−). At pH 8.5, binding of Zn2+, Cd2+, or Ni2+ reduced the rates of proton uptake upon QA− and QB− formation as well as kAB(1) by ≈an order of magnitude, resulting in similar final values, indicating that there is a common rate-limiting step. Because D+QA− is formed 105-fold faster than the induced proton uptake, the observed rate decrease must be caused by an inhibition of the proton transfer. The Glu-L212→Gln mutant reaction centers displayed greatly reduced amplitudes of proton uptake and exhibited no changes in rates of proton uptake or electron transfer upon Zn2+ binding. Therefore, metal binding specifically decreased the rate of proton transfer to Glu-L212, because the observed rates were decreased only when proton uptake by Glu-L212 was required. The entry point for the second proton H+(2) was thus identified to be the same as for the first proton H+(1), close to the metal binding region Asp-H124, His-H126, and His-H128.
Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes
Resumo:
We describe an efficient technique for the selective chemical and biological manipulation of the contents of individual cells. This technique is based on the electric-field-induced permeabilization (electroporation) in biological membranes using a low-voltage pulse generator and microelectrodes. A spatially highly focused electric field allows introduction of polar cell-impermeant solutes such as fluorescent dyes, fluorogenic reagents, and DNA into single cells. The high spatial resolution of the technique allows for design of, for example, cellular network constructions in which cells in close contact with each other can be made to possess different biochemical, biophysical, and morphological properties. Fluorescein, and fluo-3 (a calcium-sensitive fluorophore), are electroporated into the soma of cultured single progenitor cells derived from adult rat hippocampus. Fluo-3 also is introduced into individual submicrometer diameter processes of thapsigargin-treated progenitor cells, and a plasmid vector cDNA construct (pRAY 1), expressing the green fluorescent protein, is electroporated into cultured single COS 7 cells. At high electric field strengths, observations of dye-transfer into organelles are proposed.
Resumo:
In most eukaryotic cells, mitochondria use the respiratory chain to produce a proton gradient, which is then harnessed for the synthesis of ATP. Recently, mitochondrial roles in regulation of apoptosis have been discovered in many cell types. Eosinophils (Eos) die by apoptosis, but the presence and function of mitochondria in Eos are unknown. This study found that Eos contain mitochondria in small numbers, as shown by labeling with membrane potential-sensitive dyes and in situ PCR for a mitochondrial gene. Eos generate mitochondrial membrane potential from hydrolysis of ATP rather than from respiration, as shown by mitochondrial respiratory inhibitors and mitochondrial uncouplers. The mitochondria provide insignificant respiration but can induce apoptosis, as shown by using the mitochondrial F1F0-ATPase inhibitor oligomycin and translocation of cytochrome c. Thus during differentiation of Eos, although respiration is lost, the other central role of mitochondria, the induction of apoptosis, is retained.
Resumo:
Xanthene dyes are known to form dimers with spectral characteristics that have been interpreted in terms of exciton theory. A unique aspect of H-type dimers is the fluorescence quenching that accompanies their formation. Using the principles of exciton theory as a guide, a series of protease substrates was synthesized with a xanthene dye on each side of the cleavage site. To bring the attached dyes into spatial proximity to form a dimer, the molecular design included structure determinant regions in the amino acid sequence. In addition, chromophores were chosen such that changes in absorption spectra indicative of exciton splitting were anticipated. Cleavage of the peptides by a protease resulted in disruption of the dimers and indeed significant absorption spectral changes were observed. Furthermore, substrate cleavage was accompanied by at least an order of magnitude increase in fluorescence intensity. This has allowed determination of intracellular elastase activity using a fluorescence microscope equipped with standard optics.
Resumo:
To replicate, HIV-1 must integrate a cDNA copy of the viral RNA genome into a chromosome of the host. The integration system is a promising target for antiretroviral agents, but to date no clinically useful integration inhibitors have been identified. Previous screens for integrase inhibitors have assayed inhibition of reactions containing HIV-1 integrase purified from an Escherichia coli expression system. Here we compare action of inhibitors in vitro on purified integrase and on subviral preintegration complexes (PICs) isolated from lymphoid cells infected with HIV-1. We find that many inhibitors active against purified integrase are inactive against PICs. Using PIC assays as a primary screen, we have identified three new anthraquinone inhibitors active against PICs and also against purified integrase. We propose that PIC assays are the closest in vitro match to integration in vivo and, as such, are particularly appropriate for identifying promising integration inhibitors.