3 resultados para Anorexia Nervosa
em National Center for Biotechnology Information - NCBI
Resumo:
I measured the strength of interaction between a marine herbivore and its growing resource over a realistic range of absolute and relative abundances. The herbivores (hermit crabs: Pagurus spp.) have slow and/or weak functional and numerical responses to epiphytic diatoms (Isthmia nervosa), which show logistic growth in the absence of consumers. By isolating this interaction in containers in the field, I mimicked many of the physical and biological variables characteristic of the intertidal while controlling the densities of focal species. The per capita effects of consumers on the population dynamics of their resource (i.e., interaction strength) were defined by using the relationship between hermit crab density and proportional change in the resource. When this relationship is fit by a Weibull function, a single parameter distinguishes constant interaction strength from one that varies as a function of density. Constant interaction strength causes the proportion of diatoms to fall linearly or proportionally as hermit crab density increases whereas per capita effects that increase with density cause an accelerating decline. Although many mathematical models of species interactions assume linear dynamics and invariant parameters, at least near equilibrium, the per capita effects of hermit crabs on diatoms varied substantially, apparently crossing a threshold from weak to strong when consumption exceeded resource production. This threshold separates a domain of coexistence from one of local extinction of the resource. Such thresholds may help explain trophic cascades, resource compensation, and context-dependent interaction strengths, while indicating a way to predict trophic effects, despite nonlinearities, as a function of vital rates.
Resumo:
Neuropeptide Y (NPY) and the endogenous melanocortin receptor antagonist, agouti gene-related protein (AGRP), coexist in the arcuate nucleus, and both exert orexigenic effects. The present study aimed primarily at determining the brain distribution of AGRP. AGRP mRNA-expressing cells were limited to the arcuate nucleus, representing a major subpopulation (95%) of the NPY neurons, which also was confirmed with immunohistochemistry. AGRP-immunoreactive (-ir) terminals all contained NPY and were observed in many brain regions extending from the rostral telencephalon to the pons, including the parabrachial nucleus. NPY-positive, AGRP-negative terminals were observed in many areas. AGRP-ir terminals were reduced dramatically in all brain regions of mice treated neonatally with monosodium glutamate as well as of mice homozygous for the anorexia mutation. Terminals immunoreactive for the melanocortin peptide α-melanocyte-stimulating hormone formed a population separate from, but parallel to, the AGRP-ir terminals. Our results show that arcuate NPY neurons, identified by the presence of AGRP, project more extensively in the brain than previously known and indicate that the feeding regulatory actions of NPY may extend beyond the hypothalamus.