34 resultados para Anguilla Reinhardtii

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PsaF-deficient mutant 3bF of Chlamydomonas reinhardtii was used to modify PsaF by nuclear transformation and site-directed mutagenesis. Four lysine residues in the N-terminal domain of PsaF, which have been postulated to form the positively charged face of a putative amphipathic α-helical structure were altered to K12P, K16Q, K23Q, and K30Q. The interactions between plastocyanin (pc) or cytochrome c6 (cyt c6) and photosystem I (PSI) isolated from wild type and the different mutants were analyzed using crosslinking techniques and flash absorption spectroscopy. The K23Q change drastically affected crosslinking of pc to PSI and electron transfer from pc and cyt c6 to PSI. The corresponding second order rate constants for binding of pc and cyt c6 were reduced by a factor of 13 and 7, respectively. Smaller effects were observed for mutations K16Q and K30Q, whereas in K12P the binding was not changed relative to wild type. None of the mutations affected the half-life of the microsecond electron transfer performed within the intermolecular complex between the donors and PSI. The fact that these single amino acid changes within the N-terminal domain of PsaF have different effects on the electron transfer rate constants and dissociation constants for both electron donors suggests the existence of a rather precise recognition site for pc and cyt c6 that leads to the stabilization of the final electron transfer complex through electrostatic interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-Mendelian inheritance of organelle genes is a phenomenon common to almost all eukaryotes, and in the isogamous alga Chlamydomonas reinhardtii, chloroplast (cp) genes are transmitted from the mating type positive (mt+) parent. In this study, the preferential disappearance of the fluorescent cp nucleoids of the mating type negative (mt−) parent was observed in living young zygotes. To study the change in cpDNA molecules during the preferential disappearance, the cpDNA of mt+ or mt− origin was labeled separately with bacterial aadA gene sequences. Then, a single zygote with or without cp nucleoids was isolated under direct observation by using optical tweezers and investigated by nested PCR analysis of the aadA sequences. This demonstrated that cpDNA molecules are digested completely during the preferential disappearance of mt− cp nucleoids within 10 min, whereas mt+ cpDNA and mitochondrial DNA are protected from the digestion. These results indicate that the non-Mendelian transmission pattern of organelle genes is determined immediately after zygote formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydomonas reinhardtii flagellar regeneration is accompanied by rapid induction of genes encoding a large set of flagellar structural components and provides a model system to study coordinate gene regulation and organelle assembly. After deflagellation, the abundance of a 70-kDa flagellar dynein intermediate chain (IC70, encoded by ODA6) mRNA increases approximately fourfold within 40 min and returns to predeflagellation levels by ∼90 min. We show by nuclear run-on that this increase results, in part, from increased rates of transcription. To localize cis induction elements, we created an IC70 minigene and measured accumulation, in C. reinhardtii, of transcripts from the endogenous gene and from introduced promoter deletion constructs. Clones containing 416 base pairs (bp) of 5′- and 2 kilobases (kb) of 3′-flanking region retained all sequences necessary for a normal pattern of mRNA abundance change after deflagellation. Extensive 5′- and 3′- flanking region deletions, which removed multiple copies of a proposed deflagellation-response element (the tub box), did not eliminate induction, and the IC70 5′-flanking region alone did not confer deflagellation responsiveness to a promoterless arylsulfatase (ARS) gene. Instead, an intron in the IC70 gene 5′-untranslated region was found to contain the deflagellation response element. These results suggest that the tub box does not play an essential role in deflagellation-induced transcriptional regulation of this dynein gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chloroplast gene rbcL encodes the large subunit of the CO2-fixing enzyme ribulose-bisphosphate carboxylase. In previous work a target for photo-accelerated degradation of Chlamydomonas reinhardtii rbcL transcripts in vivo was found to lie within the first 63 nucleotides, and a sequence element required for increasing the longevity of transcripts of rbcL-reporter genes was found to occur between nucleotides 170 and 350. Photo-accelerated degradation of rbcL transcripts has been found to require nucleotides 21 to 41. Transcript nucleotides lying between 329 and 334 and between 14 and 27 are essential for stabilizing transcripts in vivo; mutations in either region reduce the longevity of transcripts. It is postulated that the effectiveness of photo-accelerated endonuclease attacks on the nucleotide 21 to 41 region is reduced by physical blockage or distortion of the target sequence by interacting proteins that associate with nucleotides in the 14 to 27 and 329 to 334 regions of the transcripts. Both the nucleotide +329 to +334 stabilizing sequence of rbcL and a transcription enhancing sequence that lies between +126 and +170 encode well conserved (cyanobacteria through angiosperms) amino acid sequences; the evolution of expression control elements within the protein coding sequence of rbcL is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genes that are expressed only in the young zygote are considered to be of great importance in the development of an isogamous green alga, Chlamydomonas reinhardtii. Clones representing the Zys3 gene were isolated from a cDNA library prepared using zygotes at 10 min after fertilization. Sequencing of Zys3 cDNA clones resulted in the isolation of two related molecular species. One of them encoded a protein that contained two kinds of protein-to-protein interaction motifs known as ankyrin repeats and WW domains. The other clone lacked the ankyrin repeats but was otherwise identical. These mRNA species began to accumulate simultaneously in cells beginning 10 min after fertilization, and reached maximum levels at about 4 h, after which time levels decreased markedly. Genomic DNA gel-blot analysis indicated that Zys3 was a single-copy gene. The Zys3 proteins exhibited parallel expression to the Zys3 mRNAs at first, appearing 2 h after mating, and reached maximum levels at more than 6 h, but persisted to at least 1 d. Immunocytochemical analysis revealed their localization in the endoplasmic reticulum, which suggests a role in the morphological changes of the endoplasmic reticulum or in the synthesis and transport of proteins to the Golgi apparatus or related vesicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wild-type Chlamydomonas reinhardtii cells shifted from high concentrations (5%) of CO2 to low, ambient levels (0.03%) rapidly increase transcription of mRNAs from several CO2-responsive genes. Simultaneously, they develop a functional carbon concentrating mechanism that allows the cells to greatly increase internal levels of CO2 and HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document}. The cia5 mutant is defective in all of these phenotypes. A newly isolated gene, designated Cia5, restores transformed cia5 cells to the phenotype of wild-type cells. The 6,481-bp gene produces a 5.1-kb mRNA that is present constitutively in light in high and low CO2 both in wild-type cells and the cia5 mutant. It encodes a protein that has features of a putative transcription factor and that, likewise, is present constitutively in low and high CO2 conditions. Complementation of cia5 can be achieved with a truncated Cia5 gene that is missing the coding information for 54 C-terminal amino acids. Unlike wild-type cells or cia5 mutants transformed with an intact Cia5 gene, cia5 mutants complemented with the truncated gene exhibit constitutive synthesis of mRNAs from CO2-responsive genes in light under both high and low CO2 conditions. These discoveries suggest that posttranslational changes to the C-terminal domain control the ability of CIA5 to act as an inducer and directly or indirectly control transcription of CO2-responsive genes. Thus, CIA5 appears to be a master regulator of the carbon concentrating mechanism and is intimately involved in the signal transduction mechanism that senses and allows immediate responses to fluctuations in environmental CO2 and HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquatic photosynthetic organisms, including the green alga Chlamydomonas reinhardtii, induce a set of genes for a carbon-concentrating mechanism (CCM) to acclimate to CO2-limiting conditions. This acclimation is modulated by some mechanisms in the cell to sense CO2 availability. Previously, a high-CO2-requiring mutant C16 defective in an induction of the CCM was isolated from C. reinhardtii by gene tagging. By using this pleiotropic mutant, we isolated a nuclear regulatory gene, Ccm1, encoding a 699-aa hydrophilic protein with a putative zinc-finger motif in its N-terminal region and a Gln repeat characteristic of transcriptional activators. Introduction of Ccm1 into this mutant restored an active carbon transport through the CCM, development of a pyrenoid structure in the chloroplast, and induction of a set of CCM-related genes. That a 5,128-base Ccm1 transcript and also the translation product of 76 kDa were detected in both high- and low-CO2 conditions suggests that CCM1 might be modified posttranslationally. These data indicate that Ccm1 is essential to control the induction of CCM by sensing CO2 availability in Chlamydomonas cells. In addition, complementation assay and identification of the mutation site of another pleiotropic mutant, cia5, revealed that His-54 within the putative zinc-finger motif of the CCM1 is crucial to its regulatory function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time course of and the influence of light intensity and light quality on the induction of a mitochondrial carbonic anhydrase (CA) in the unicellular green alga Chlamydomonas reinhardtii was characterized using western and northern blots. This CA was expressed only under low-CO2 conditions (ambient air). In asynchronously grown cells, the mRNA was detected 15 min after transfer from air containing 5% CO2 to ambient air, and the 21-kD polypeptide was detected on western blots after 1 h. When transferred back to air containing 5% CO2, the mRNA disappeared within 1 h and the polypeptide was degraded within 3 d. Photosynthesis was required for the induction in asynchronous cultures. The induction increased with light up to 500 μmol m−2 s−1, where saturation occurred. In cells grown synchronously, however, expression of the mitochondrial CA was also detected in darkness. Under such conditions the expression followed a circadian rhythm, with mRNA appearing in the dark 30 min before the light was turned on. Algae left in darkness continued this rhythm for several days.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mass-spectrometric disequilibrium analysis was applied to investigate CO2 uptake and HCO3− transport in cells and chloroplasts of the microalgae Dunaliella tertiolecta and Chlamydomonas reinhardtii, which were grown in air enriched with 5% (v/v) CO2 (high-Ci cells) or in ambient air (low-Ci cells). High- and low-Ci cells of both species had the capacity to transport CO2 and HCO3−, with maximum rates being largely unaffected by the growth conditions. In high- and low-Ci cells of D. tertiolecta, HCO3− was the dominant inorganic C species taken up, whereas HCO3− and CO2 were used at similar rates by C. reinhardtii. The apparent affinities of HCO3− transport and CO2 uptake increased 3- to 9-fold in both species upon acclimation to air. Photosynthetically active chloroplasts isolated from both species were able to transport CO2 and HCO3−. For chloroplasts from C. reinhardtii, the concentrations of HCO3− and CO2 required for half-maximal activity declined from 446 to 33 μm and 6.8 to 0.6 μm, respectively, after acclimation of the parent cells to air; the corresponding values for chloroplasts from D. tertiolecta decreased from 203 to 58 μm and 5.8 to 0.5 μm, respectively. These results indicate the presence of inducible high-affinity HCO3− and CO2 transporters at the chloroplast envelope membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated a light-conditional mutant of Chlamydomonas reinhardtii (J12) that is unable to synthesize chlorophyll in the dark with the aim of characterizing the mitochondrial membrane polypeptides of this alga. A crude membrane fraction derived from etiolated cells was analyzed by gel electrophoresis, immunoblot analysis, and pulse-labeling in the presence of specific protein synthesis inhibitors. This fraction contained both mitochondrial and etioplast membranes, and the latter contained appreciable amounts of subunits of the cytochrome b6f complex. The mitochondria-encoded subunit 1 of cytochrome-c oxidase called COX1 was identified, and its synthesis was detected in this membrane fraction. The redox-difference spectra of mitochondrial cytochromes were studied in whole cells and membrane fractions, in both respiratory-competent and -deficient strains. Mitochondrial membranes could be further purified after sucrose gradient centrifugation. The use of etiolated cells and their membrane extracts, in association with appropriate methodologies, opens ways to study the molecular genetics of mitochondria in C. reinhardtii and allows us to address the question of the cooperation established between the three genetic compartments of a plant cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have explored the localization of the uni chromosome (LG XIX) of Chlamydomonas reinhardtii using the technique of in situ hybridization. Using standardized methods of cell fixation together with large chromosome-specific probes we have studied the position of uni DNA sequences in metaphase and interphase cells. We find that in dividing cells uni probes identify a condensed metaphase chromosome that shows no specialized orientation. In interphase cells uni hybridization signals occur on the anterior edge of the nucleus at a position where basal bodies are normally associated with the nuclear envelope. These data reveal an underlying spatial organization of uni chromosomal DNA within the interphase nucleus that may be significant in terms of the fact that this chromosome encodes numerous functions affecting basal body and flagellar assembly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A process that we refer to as control by epistasy of synthesis (CES process) occurs during chloroplast protein biogenesis in Chlamydomonas reinhardtii: the synthesis of some chloroplast-encoded subunits, the CES subunits, is strongly attenuated when some other subunits from the same complex, the dominant subunits, are missing. Herein we investigate the molecular basis of the CES process for the biogenesis of the cytochrome b6f complex and show that negative autoregulation of cytochrome f translation occurs in the absence of other complex subunits. This autoregulation is mediated by an interaction, either direct or indirect, between the 5′ untranslated region of petA mRNA, which encodes cytochrome f, and the C-terminal domain of the unassembled protein. This model for the regulation of cytochrome f translation explains both the decreased rate of cytochrome f synthesis in vivo in the absence of its assembly partners and its increase in synthesis when significant accumulation of the C-terminal domain of the protein is prevented. When expressed from a chimeric mRNA containing the atpA 5′ untranslated region, cytochrome f no longer showed an assembly-dependent regulation of translation. Conversely, the level of antibiotic resistance conferred by a chimeric petA-aadA-rbcL gene was shown to depend on the state of assembly of cytochrome b6f complexes and on the accumulation of the C-terminal domain of cytochrome f. We discuss the possible ubiquity of the CES process in organellar protein biogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological speciation ultimately results in prezygotic isolation—the inability of incipient species to mate with one another–but little is understood about the selection pressures and genetic changes that generate this outcome. The genus Chlamydomonas comprises numerous species of unicellular green algae, including numerous geographic isolates of the species C. reinhardtii. This diverse collection has allowed us to analyze the evolution of two sex-related genes: the mid gene of C. reinhardtii, which determines whether a gamete is mating-type plus or minus, and the fus1 gene, which dictates a cell surface glycoprotein utilized by C. reinhardtii plus gametes to recognize minus gametes. Low stringency Southern analyses failed to detect any fus1 homologs in other Chlamydomonas species and detected only one mid homolog, documenting that both genes have diverged extensively during the evolution of the lineage. The one mid homolog was found in C. incerta, the species in culture that is most closely related to C. reinhardtii. Its mid gene carries numerous nonsynonymous and synonymous codon changes compared with the C. reinhardtii mid gene. In contrast, very high sequence conservation of both the mid and fus1 sequences is found in natural isolates of C. reinhardtii, indicating that the genes are not free to drift within a species but do diverge dramatically between species. Striking divergence of sex determination and mate recognition genes also has been encountered in a number of other eukaryotic phyla, suggesting that unique, and as yet unidentified, selection pressures act on these classes of genes during the speciation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the ways in which phosphorus metabolism is regulated in photosynthetic eukaryotes is critical for optimizing crop productivity and managing aquatic ecosystems in which phosphorus can be a major source of pollution. Here we describe a gene encoding a regulator of phosphorus metabolism, designated Psr1 (phosphorus starvation response), from a photosynthetic eukaryote. The Psr1 protein is critical for acclimation of the unicellular green alga Chlamydomonas reinhardtii to phosphorus starvation. The N-terminal half of Psr1 contains a region similar to myb DNA-binding domains and the C-terminal half possesses glutamine-rich sequences characteristic of transcriptional activators. The level of Psr1 increases at least 10-fold upon phosphate starvation, and immunocytochemical studies demonstrate that this protein is nuclear-localized under both nutrient-replete and phosphorus-starvation conditions. Finally, Psr1 and angiosperm proteins have domains that are similar, suggesting a possible role for Psr1 homologs in the control of phosphorus metabolism in vascular plants. With the identification of regulators such as Psr1 it may become possible to engineer photosynthetic organisms for more efficient utilization of phosphorus and to establish better practices for the management of agricultural lands and natural ecosystems.