20 resultados para Angiosperm

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiosperm paleobotany has widened its horizons, incorporated new techniques, developed new databases, and accepted new questions that can now focus on the evolution of the group. The fossil record of early flowering plants is now playing an active role in addressing questions of angiosperm phylogeny, angiosperm origins, and angiosperm radiations. Three basic nodes of angiosperm radiations are identified: (i) the closed carpel and showy radially symmetrical flower, (ii) the bilateral flower, and (iii) fleshy fruits and nutritious nuts and seeds. These are all coevolutionary events and spread out through time during angiosperm evolution. The proposal is made that the genetics of the angiosperms pressured the evolution of the group toward reproductive systems that favored outcrossing. This resulted in the strongest selection in the angiosperms being directed toward the flower, fruits, and seeds. That is why these organs often provide the best systematic characters for the group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For almost a century, events relating to the evolutionary origin of endosperm, a unique embryo-nourishing tissue that is essential to the reproductive process in flowering plants, have remained a mystery. Integration of recent advances in phylogenetic reconstruction, comparative reproductive biology, and genetic theory can be used to elucidate the evolutionary events and forces associated with the establishment of endosperm. Endosperm is shown to be derived from one of two embryos formed during a rudimentary process of "double fertilization" that evolved in the ancestors of angiosperms. Acquisition of embryo-nourishing behavior (with accompanying loss of individual fitness) by this supernumerary fertilization product was dependent upon compensatory gains in the inclusive fitness of related embryos. The result of the loss of individual fitness by one of the two original products of double fertilization was the establishment of endosperm, a highly modified embryo/organism that reproduces cryptically through behavior that enhances the fitness of its associated embryo within a seed. Finally, although triploid endosperm remains a synapomorphy of angiosperms, inclusive fitness analysis demonstrates that the embryo-nourishing properties of endosperm initially evolved in a diploid condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A densely sampled, diverse new fauna from the uppermost Cedar Mountain Formation, Utah, indicates that the basic pattern of faunal composition for the Late Cretaceous of North America was already established by the Albian-Cenomanian boundary. Multiple, concordant 40Ar/39Ar determinations from a volcanic ash associated with the fauna have an average age of 98.39 ± 0.07 million years. The fauna of the Cedar Mountain Formation records the first global appearance of hadrosaurid dinosaurs, advanced lizard (e.g., Helodermatidae), and mammal (e.g., Marsupialia) groups, and the first North American appearance of other taxa such as tyrannosaurids, pachycephalosaurs, and snakes. Although the origin of many groups is unclear, combined biostratigraphic and phylogenetic evidence suggests an Old World, specifically Asian, origin for some of the taxa, an hypothesis that is consistent with existing evidence from tectonics and marine invertebrates. Large-bodied herbivores are mainly represented by low-level browsers, ornithopod dinosaurs, whose radiations have been hypothesized to be related to the initial diversification of angiosperm plants. Diversity at the largest body sizes (>106 g) is low, in contrast to both preceding and succeeding faunas; sauropods, which underwent demise in the Northern hemisphere coincident with the radiation of angiosperms, apparently went temporarily unreplaced by other megaherbivores. Morphologic and taxonomic diversity among small, omnivorous mammals, multituberculates, is also low. A later apparent increase in diversity occurred during the Campanian, coincident with the appearance of major fruit types among angiosperms, suggesting the possibility of adaptive response to new resources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The psbA gene of the chloroplast genome has a codon usage that is unusual for plant chloroplast genes. In the present study the evolutionary status of this codon usage is tested by reconstructing putative ancestral psbA sequences to determine the pattern of change in codon bias during angiosperm divergence. It is shown that the codon biases of the ancestral genes are much stronger than all extant flowering plant psbA genes. This is related to previous work that demonstrated a significant increase in synonymous substitution in psbA relative to other chloroplast genes. It is suggested, based on the two lines of evidence, that the codon bias of this gene currently is not being maintained by selection. Rather, the atypical codon bias simply may be a remnant of an ancestral codon bias that now is being degraded by the mutation bias of the chloroplast genome, in other words, that the psbA gene is not at equilibrium. A model for the evolution of selective pressure on the codon usage of plant chloroplast genes is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alcohol dehydrogenase (Adh) gene family is much more complex in Pinus banksiana than in angiosperms, with at least seven expressed genes organized as two tightly linked clusters. Intron number and position are highly conserved between P. banksiana and angiosperms. Unlike angiosperm Adh genes, numerous duplications, as large as 217 bp, were observed within the noncoding regions of P. banksiana Adh genes and may be a common feature of conifer genes. A high frequency of duplication over a wide range of scales may contribute to the large genome size of conifers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Group I introns are mobile, self-splicing genetic elements found principally in organellar genomes and nuclear rRNA genes. The only group I intron known from mitochondrial genomes of vascular plants is located in the cox1 gene of Peperomia, where it is thought to have been recently acquired by lateral transfer from a fungal donor. Southern-blot surveys of 335 diverse genera of land plants now show that this intron is in fact widespread among angiosperm cox1 genes, but with an exceptionally patchy phylogenetic distribution. Four lines of evidence—the intron’s highly disjunct distribution, many incongruencies between intron and organismal phylogenies, and two sources of evidence from exonic coconversion tracts—lead us to conclude that the 48 angiosperm genera found to contain this cox1 intron acquired it by 32 separate horizontal transfer events. Extrapolating to the over 13,500 genera of angiosperms, we estimate that this intron has invaded cox1 genes by cross-species horizontal transfer over 1,000 times during angiosperm evolution. This massive wave of lateral transfers is of entirely recent occurrence, perhaps triggered by some key shift in the intron’s invasiveness within angiosperms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of the origin and evolution of gene families is critical to our understanding of the evolution of protein function. To gain a detailed understanding of the evolution of the small heat shock proteins (sHSPs) in plants, we have examined the evolutionary history of the chloroplast (CP)-localized sHSPs. Previously, these nuclear-encoded CP proteins had been identified only from angiosperms. This study reveals the presence of the CP sHSPs in a moss, Funaria hygrometrica. Two clones for CP sHSPs were isolated from a F. hygrometrica heat shock cDNA library that represent two distinct CP sHSP genes. Our analysis of the CP sHSPs reveals unexpected evolutionary relationships and patterns of sequence conservation. Phylogenetic analysis of the CP sHSPs with other plant CP sHSPs and eukaryotic, archaeal, and bacterial sHSPs shows that the CP sHSPs are not closely related to the cyanobacterial sHSPs. Thus, they most likely evolved via gene duplication from a nuclear-encoded cytosolic sHSP and not via gene transfer from the CP endosymbiont. Previous sequence analysis had shown that all angiosperm CP sHSPs possess a methionine-rich region in the N-terminal domain. The primary sequence of this region is not highly conserved in the F. hygrometrica CP sHSPs. This lack of sequence conservation indicates that sometime in land plant evolution, after the divergence of mosses from the common ancestor of angiosperms but before the monocot–dicot divergence, there was a change in the selective constraints acting on the CP sHSPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many homeobox genes control essential developmental processes in animals and plants. In this report, we describe the first cDNA corresponding to a homeobox gene isolated from a gymnosperm, the HBK1 gene from the conifer Picea abies (L.) Karst (Norway spruce). The sequence shows distinct similarities specifically to the KNOX (knotted-like homeobox) class of homeobox genes known from different angiosperm plants. The deduced amino acid sequence of HBK1 is strikingly similar within the homeodomain (84% identical) to the maize gene Knotted1 (Kn1), which acts to regulate cell differentiation in the shoot meristem. This similarity suggested that the phylogenetic association of HBK1 with the KNOX genes might be coupled to a conservation of gene function. In support of this suggestion, we have found HBK1 to be expressed in the apical meristem in the central population of nondifferentiated stem cells, but not in organ primordia developing at the flanks of the meristem. This pattern of expression is similar to that of Kn1 in the maize meristem. We show further that HBK1, when expressed ectopically in transgenic Arabidopsis plants, causes aberrations in leaf development that are similar to the effects of ectopic expression of angiosperm KNOX genes on Arabidopsis development. Taken together, these data suggest that HBK1 has a role, similar to the KNOX genes in angiosperms, in the control of cellular differentiation in the apical meristem of spruce. The data also indicate that KNOX-gene regulation of vegetative development is an ancient feature of seed plants that was present in the last common ancestor of conifers and angiosperms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the ways in which phosphorus metabolism is regulated in photosynthetic eukaryotes is critical for optimizing crop productivity and managing aquatic ecosystems in which phosphorus can be a major source of pollution. Here we describe a gene encoding a regulator of phosphorus metabolism, designated Psr1 (phosphorus starvation response), from a photosynthetic eukaryote. The Psr1 protein is critical for acclimation of the unicellular green alga Chlamydomonas reinhardtii to phosphorus starvation. The N-terminal half of Psr1 contains a region similar to myb DNA-binding domains and the C-terminal half possesses glutamine-rich sequences characteristic of transcriptional activators. The level of Psr1 increases at least 10-fold upon phosphate starvation, and immunocytochemical studies demonstrate that this protein is nuclear-localized under both nutrient-replete and phosphorus-starvation conditions. Finally, Psr1 and angiosperm proteins have domains that are similar, suggesting a possible role for Psr1 homologs in the control of phosphorus metabolism in vascular plants. With the identification of regulators such as Psr1 it may become possible to engineer photosynthetic organisms for more efficient utilization of phosphorus and to establish better practices for the management of agricultural lands and natural ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant phylogenetic estimates are most likely to be reliable when congruent evidence is obtained independently from the mitochondrial, plastid, and nuclear genomes with all methods of analysis. Here, results are presented from separate and combined genomic analyses of new and previously published data, including six and nine genes (8,911 bp and 12,010 bp, respectively) for different subsets of taxa that suggest Amborella + Nymphaeales (water lilies) are the first-branching angiosperm lineage. Before and after tree-independent noise reduction, most individual genomic compartments and methods of analysis estimated the Amborella + Nymphaeales basal topology with high support. Previous phylogenetic estimates placing Amborella alone as the first extant angiosperm branch may have been misled because of a series of specific problems with paralogy, suboptimal outgroups, long-branch taxa, and method dependence. Ancestral character state reconstructions differ between the two topologies and affect inferences about the features of early angiosperms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The LEAFY/FLORICAULA genes from Arabidopsis and Antirrhinum are necessary for normal flower development and play a key role in diverse angiosperm species. A homologue of these flower meristem-identity genes, NEEDLY (NLY), has been identified in Pinus radiata. Although the NLY protein shares extensive sequence similarity with its angiosperm counterparts, it is lacking the proline-rich and acidic motifs thought to function as transcriptional activation domains. NLY already is expressed during vegetative development at least 5 years before the transition to the reproductive phase. Expression of NLY in transgenic Arabidopsis promotes floral fate, demonstrating that, despite its sequence divergence, NLY encodes a functional ortholog of the FLORICAULA/LEAFY genes of angiosperms. Expression of the LFY∷NLY transgene can largely complement the defects in flower development caused by a severe lfy allele.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homeodomain proteins are transcription factors that play a critical role in early development in eukaryotes. These proteins previously have been classified into numerous subgroups whose phylogenetic relationships are unclear. Our phylogenetic analysis of representative eukaryotic sequences suggests that there are two major groups of homeodomain proteins, each containing sequences from angiosperms, metazoa, and fungi. This result, based on parsimony and neighbor-joining analyses of primary amino acid sequences, was supported by two additional features of the proteins. The two protein groups are distinguished by an insertion/deletion in the homeodomain, between helices I and II. In addition, an amphipathic alpha-helical secondary structure in the region N terminal of the homeodomain is shared by angiosperm and metazoan sequences in one group. These results support the hypothesis that there was at least one duplication of homeobox genes before the origin of angiosperms, fungi, and metazoa. This duplication, in turn, suggests that these proteins had diverse functions early in the evolution of eukaryotes. The shared secondary structure in angiosperm and metazoan sequences points to an ancient conserved functional domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants are the basis of life on earth. We cannot overemphasize their importance. The value of plant genome initiatives is self-evident. The need is to identify priorities for action. The angiosperm genome is highly variable, but the extent of this variability is unknown. Uncertainties remain about the number of genes and the number of species living. Many plants will become extinct before they are discovered. We risk losing both genes and vital information about plant uses. There are also major gaps in our karyotypic knowledge. No chromosome count exists for >70% of angiosperm species. DNA C values are known for only ≈1% of angiosperms, a sample unrepresentative of the global flora. Researchers reported new relationships between genome size and characters of major interest for plant breeding and the environment and the need for more data. In 1997, a Royal Botanic Gardens Kew workshop identified gaps and planned international collaboration to fill them. An electronic version of the Angiosperm DNA C value database also was published. Another initiative, which will make a very significant contribution to the conservation of plant genetic diversity on a global scale is Kew’s Millennium Seed Bank, partly funded by the U.K. Millennium Commission, celebrating the year 2000. Costing up to £80 million (£1 = $1.62), its main aims are to collect and conserve the seed of almost all of the U.K. spermatophyte flora by the year 2000, to collect and conserve a further 10% of the world spermatophyte flora principally from the drylands by 2009, and to provide a world class building as the focus of this activity by 2000.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We summarize our recent studies showing that angiosperm mitochondrial (mt) genomes have experienced remarkably high rates of gene loss and concomitant transfer to the nucleus and of intron acquisition by horizontal transfer. Moreover, we find substantial lineage-specific variation in rates of these structural mutations and also point mutations. These findings mostly arise from a Southern blot survey of gene and intron distribution in 281 diverse angiosperms. These blots reveal numerous losses of mt ribosomal protein genes but, with one exception, only rare loss of respiratory genes. Some lineages of angiosperms have kept all of their mt ribosomal protein genes whereas others have lost most of them. These many losses appear to reflect remarkably high (and variable) rates of functional transfer of mt ribosomal protein genes to the nucleus in angiosperms. The recent transfer of cox2 to the nucleus in legumes provides both an example of interorganellar gene transfer in action and a starting point for discussion of the roles of mechanistic and selective forces in determining the distribution of genetic labor between organellar and nuclear genomes. Plant mt genomes also acquire sequences by horizontal transfer. A striking example of this is a homing group I intron in the mt cox1 gene. This extraordinarily invasive mobile element has probably been acquired over 1,000 times separately during angiosperm evolution via a recent wave of cross-species horizontal transfers. Finally, whereas all previously examined angiosperm mtDNAs have low rates of synonymous substitutions, mtDNAs of two distantly related angiosperms have highly accelerated substitution rates.