10 resultados para Angiomatoid fibrous histiocytoma

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple isoforms of type 1 hexokinase (HK1) are transcribed during spermatogenesis in the mouse, including at least three that are presumably germ cell specific: HK1-sa, HK1-sb, and HK1-sc. Each of these predicted proteins contains a common, germ cell-specific sequence that replaces the porin-binding domain found in somatic HK1. Although HK1 protein is present in mature sperm and is tyrosine phosphorylated, it is not known whether the various potential isoforms are differentially translated and localized within the developing germ cells and mature sperm. Using antipeptide antisera against unique regions of HK1-sa and HK1-sb, it was demonstrated that these isoforms were not found in pachytene spermatocytes, round spermatids, condensing spermatids, or sperm, suggesting that HK1-sa and HK1-sb are not translated during spermatogenesis. Immunoreactivity was detected in protein from round spermatids, condensing spermatids, and mature sperm using an antipeptide antiserum against the common, germ cell-specific region, suggesting that HK1-sc was the only germ cell-specific isoform present in these cells. Two-dimensional SDS-PAGE suggested that all of the sperm HK1-sc was tyrosine phosphorylated, and that the somatic HK1 isoform was not present. Immunoelectron microscopy revealed that HK1-sc was associated with the mitochondria and with the fibrous sheath of the flagellum and was found in discrete clusters in the region of the membranes of the sperm head. The unusual distribution of HK1-sc in sperm suggests novel functions, such as extramitochondrial energy production, and also demonstrates that a hexokinase without a classical porin-binding domain can localize to mitochondria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3D) domain-swapped proteins are intermolecularly folded analogs of monomeric proteins; both are stabilized by the identical interactions, but the individual domains interact intramolecularly in monomeric proteins, whereas they form intermolecular interactions in 3D domain-swapped structures. The structures and conditions of formation of several domain-swapped dimers and trimers are known, but the formation of higher order 3D domain-swapped oligomers has been less thoroughly studied. Here we contrast the structural consequences of domain swapping from two designed three-helix bundles: one with an up-down-up topology, and the other with an up-down-down topology. The up-down-up topology gives rise to a domain-swapped dimer whose structure has been determined to 1.5 Å resolution by x-ray crystallography. In contrast, the domain-swapped protein with an up-down-down topology forms fibrils as shown by electron microscopy and dynamic light scattering. This demonstrates that design principles can predict the oligomeric state of 3D domain-swapped molecules, which should aid in the design of domain-swapped proteins and biomaterials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell wall deposition is a key process in the formation, growth, and differentiation of plant cells. The most important structural components of the wall are long cellulose microfibrils, which are synthesized by synthases embedded in the plasma membrane. A fundamental question is how the microfibrils become oriented during deposition at the plasma membrane. The current textbook explanation for the orientation mechanism is a guidance system mediated by cortical microtubules. However, too many contraindications are known in secondary cell walls for this to be a universal mechanism, particularly in the case of helicoidal arrangements, which occur in many situations. An additional construction mechanism involves liquid crystalline self-assembly [A. C. Neville (1993) Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge Univ. Press, Cambridge, U.K.)], but the required amount of bulk material that is able to equilibrate thermally is not normally present at any stage of the wall deposition process. Therefore, we have asked whether the complex ordered texture of helicoidal cell walls can be formed in the absence of direct cellular guidance mechanisms. We propose that they can be formed by a mechanism that is based on geometrical considerations. It explains the genesis of the complicated helicoidal texture and shows that the cell has intrinsic, versatile tools for creating a variety of textures. A compelling feature of the model is that local rules generate global order, a typical phenomenon of life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alzheimer’s disease is characterized by two types of fibrous aggregates in the affected brains, the amyloid fibers (consisting of the Aβ-peptide, generating the amyloid plaques), and paired helical filaments (PHFs; made up of tau protein, forming the neurofibrillary tangles). Hence, tau protein, a highly soluble protein that normally stabilizes microtubules, becomes aggregated into insoluble fibers that obstruct the cytoplasm of neurons and cause a loss of microtubule stability. We have developed recently a rapid assay for monitoring PHF assembly and show here that PHFs arise from a nucleated assembly mechanism. The PHF nucleus comprises about 8–14 tau monomers. A prerequisite for nucleation is the dimerization of tau because tau dimers act as effective building blocks. PHF assembly can be seeded by preformed filaments (made either in vitro or isolated from Alzheimer brain tissue). These results suggest that dimerization and nucleation are the rate-limiting steps for PHF formation in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To test the hypothesis that enhanced tolerance of oxidative stress would improve winter survival, two clones of alfalfa (Medicago sativa) were transformed with a Mn-superoxide dismutase (Mn-SOD) targeted to the mitochondria or to the chloroplast. Although Mn-SOD activity increased in most primary transgenic plants, both cytosolic and chloroplastic forms of Cu/Zn-SOD had lower activity in the chloroplast SOD transgenic plants than in the nontransgenic plants. In a field trial at Elora, Ontario, Canada, the survival and yield of 33 primary transgenic and control plants were compared. After one winter most transgenic plants had higher survival rates than control plants, with some at 100%. Similarly, some independent transgenic plants had twice the herbage yield of the control plants. Prescreening the transgenic plants for SOD activity, vigor, or freezing tolerance in the greenhouse was not effective in identifying individual transgenic plants with improved field performance. Freezing injury to leaf blades and fibrous roots, measured by electrolyte leakage from greenhouse-grown acclimated plants, indicated that the most tolerant were only 1°C more freezing-tolerant than alfalfa clone N4. There were no differences among transgenic and control plants for tetrazolium staining of field-grown plants at any freezing temperature. Therefore, although many of the transgenic plants had higher winter survival rates and herbage yield, there was no apparent difference in primary freezing injury, and therefore, the trait is not associated with a change in the primary site of freezing injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential for health risks to humans exposed to the asbestos minerals continues to be a public health concern. Although the production and use of the commercial amphibole asbestos minerals—grunerite (amosite) and riebeckite (crocidolite)—have been almost completely eliminated from world commerce, special opportunities for potentially significant exposures remain. Commercially viable deposits of grunerite asbestos are very rare, but it can occur as a gangue mineral in a limited part of a mine otherwise thought asbestos-free. This report describes such a situation, in which a very localized seam of grunerite asbestos was identified in an iron ore mine. The geological occurrence of the seam in the ore body is described, as well as the mineralogical character of the grunerite asbestos. The most relevant epidemiological studies of workers exposed to grunerite asbestos are used to gauge the hazards associated with the inhalation of this fibrous mineral. Both analytical transmission electron microscopy and phase-contrast optical microscopy were used to quantify the fibers present in the air during mining in the area with outcroppings of grunerite asbestos. Analytical transmission electron microscopy and continuous-scan x-ray diffraction were used to determine the type of asbestos fiber present. Knowing the level of the miner’s exposures, we carried out a risk assessment by using a model developed for the Environmental Protection Agency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Certain matrix metalloproteinases (MMP) are expressed within the fibrous areas surrounding acellular lipid cores of atherosclerotic plaques, suggesting that these proteinases degrade matrix proteins within these areas and weaken the structural integrity of the lesion. We report that matrilysin and macrophage metalloelastase, two broad-acting MMPs, were expressed in human atherosclerotic lesions in carotid endarterectomy samples (n = 18) but were not expressed in normal arteries (n = 7). In situ hybridization and immunohistochemistry revealed prominent expression of matrilysin in cells confined to the border between acellular lipid cores and overlying fibrous areas, a distribution distinct from other MMPs found in similar lesions. Metalloelastase was expressed in these same border areas. Matrilysin was present in lipid-laden macrophages, identified by staining with anti-CD-68 antibody. Furthermore, endarterectomy tissue in organ culture released matrilysin. Staining for versican demonstrated that this vascular proteoglycan was present at sites of matrilysin expression. Biochemical studies showed that matrilysin degraded versican much more efficiently than other MMPs present in atherosclerotic lesions. Our findings suggest that matrilysin, specifically expressed in atherosclerotic lesions, could cleave structural proteoglycans and other matrix components, potentially leading to separation of caps and shoulders from lipid cores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conversion of the cellular isoform of prion protein (PrPC) into the scrapie isoform (PrPSc) involves an increase in the beta-sheet content, diminished solubility, and resistance to proteolytic digestion. Transgenetic studies argue that PrPC and PrPSc form a complex during PrPSc formation; thus, synthetic PrP peptides, which mimic the conformational pluralism of PrP, were mixed with PrPC to determine whether its properties were altered. Peptides encompassing two alpha-helical domains of PrP when mixed with PrPC produced a complex that displayed many properties of PrPSc. The PrPC-peptide complex formed fibrous aggregates and up to 65% of complexed PrPC sedimented at 100,000 x g for 1 h, whereas PrPC alone did not. These complexes were resistant to proteolytic digestion and displayed a high beta-sheet content. Unexpectedly, the peptide in a beta-sheet conformation did not form the complex, whereas the random coil did. Addition of 2% Sarkosyl disrupted the complex and rendered PrPC sensitive to protease digestion. While the pathogenic A117V mutation increased the efficacy of complex formation, anti-PrP monoclonal antibody prevented interaction between PrPC and peptides. Our findings in concert with transgenetic investigations argue that PrPC interacts with PrPSc through a domain that contains the first two putative alpha-helices. Whether PrPC-peptide complexes possess prion infectivity as determined by bioassays remains to be established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms of export of RNA from the nucleus are poorly understood; however, several viral proteins modulate nucleocytoplasmic transport of mRNA. Among these are the adenoviral proteins E1B-55kDa and E4-34kDa. Late in infection, these proteins inhibit export of host transcripts and promote export of viral mRNA. To investigate the mechanism by which these proteins act, we have expressed them in Saccharomyces cerevisiae. Overexpression of either or both proteins has no obvious effect on cell growth. By contrast, overexpression of E1B-55kDa bearing a nuclear localization signal (NLS) dramatically inhibits cell growth. In this situation, the NLS-E1B-55kDa protein is localized to the nuclear periphery, fibrous material is seen in the nucleoplasm, and poly(A)+ RNA accumulates in the nucleus. Simultaneous overexpression of E4-34kDa bearing or lacking an NLS does not modify these effects. We discuss the mechanisms of selective mRNA transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coordinate growth of the brain and skull is achieved through a series of interactions between the developing brain, the growing bones of the skull, and the fibrous joints, or sutures, that unite the bones. These interactions couple the expansion of the brain to the growth of the bony plates at the sutures. Craniosynostosis, the premature fusion of the bones of the skull, is a common birth defect (1 in 3000 live births) that disrupts coordinate growth and often results in profoundly abnormal skull shape. Individuals affected with Boston-type craniosynostosis, an autosomal dominant disorder, bear a mutated copy of MSX2, a homeobox gene thought to function in tissue interactions. Here we show that expression of the mouse counterpart of this mutant gene in the developing skulls of transgenic mice causes craniosynostosis and ectopic cranial bone. These mice provide a transgenic model of craniosynostosis as well as a point of entry into the molecular mechanisms that coordinate the growth of the brain and skull.