11 resultados para Analysis of sites
em National Center for Biotechnology Information - NCBI
Resumo:
Dosage compensation in mammals occurs by X inactivation, a silencing mechanism regulated in cis by the X inactivation center (Xic). In response to developmental cues, the Xic orchestrates events of X inactivation, including chromosome counting and choice, initiation, spread, and establishment of silencing. It remains unclear what elements make up the Xic. We previously showed that the Xic is contained within a 450-kb sequence that includes Xist, an RNA-encoding gene required for X inactivation. To characterize the Xic further, we performed deletional analysis across the 450-kb region by yeast-artificial-chromosome fragmentation and phage P1 cloning. We tested Xic deletions for cis inactivation potential by using a transgene (Tg)-based approach and found that an 80-kb subregion also enacted somatic X inactivation on autosomes. Xist RNA coated the autosome but skipped the Xic Tg, raising the possibility that X chromosome domains escape inactivation by excluding Xist RNA binding. The autosomes became late-replicating and hypoacetylated on histone H4. A deletion of the Xist 5′ sequence resulted in the loss of somatic X inactivation without abolishing Xist expression in undifferentiated cells. Thus, Xist expression in undifferentiated cells can be separated genetically from somatic silencing. Analysis of multiple Xic constructs and insertion sites indicated that long-range Xic effects can be generalized to different autosomes, thereby supporting the feasibility of a Tg-based approach for studying X inactivation.
Resumo:
Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor family. Portions of the gene encoding KGF were amplified during primate evolution and are present in multiple nonprocessed copies in the human genome. Nucleotide analysis of a representative sampling of these KGF-like sequences indicated that they were at least 95% identical to corresponding regions of the KGF gene. To localize these sequences to specific chromosomal sites in human and higher primates, we used fluorescence in situ hybridization. In human, using a cosmid probe encoding KGF exon 1, we assigned the location of the KGF gene to chromosome 15q15–21.1. In addition, copies of KGF-like sequences hybridizing only with a cosmid probe encoding exons 2 and 3 were localized to dispersed sites on chromosome 2q21, 9p11, 9q12–13, 18p11, 18q11, 21q11, and 21q21.1. The distribution of KGF-like sequences suggests a role for alphoid DNA in their amplification and dispersion. In chimpanzee, KGF-like sequences were observed at five chromosomal sites, which were each homologous to sites in human, while in gorilla, a subset of four of these homologous sites was identified; in orangutan two sites were identified, while gibbon exhibited only a single site. The chromosomal localization of KGF sequences in human and great ape genomes indicates that amplification and dispersion occurred in multiple discrete steps, with initial KGF gene duplication and dispersion taking place in gibbon and involving loci corresponding to human chromosomes 15 and 21. These findings support the concept of a closer evolutionary relationship of human and chimpanzee and a possible selective pressure for such dispersion during the evolution of higher primates.
Resumo:
In this study we demonstrate, at an ultrastructural level, the in situ distribution of heterogeneous nuclear RNA transcription sites after microinjection of 5-bromo-UTP (BrUTP) into the cytoplasm of living cells and subsequent postembedding immunoelectron microscopic visualization after different labeling periods. Moreover, immunocytochemical localization of several pre-mRNA transcription and processing factors has been carried out in the same cells. This high-resolution approach allowed us to reveal perichromatin regions as the most important sites of nucleoplasmic RNA transcription and the perichromatin fibrils (PFs) as in situ forms of nascent transcripts. Furthermore, we show that transcription takes place in a rather diffuse pattern, without notable local accumulation of transcription sites. RNA polymerase II, heterogeneous nuclear ribonucleoprotein (hnRNP) core proteins, general transcription factor TFIIH, poly(A) polymerase, splicing factor SC-35, and Sm complex of small nuclear ribonucleoproteins (snRNPs) are associated with PFs. This strongly supports the idea that PFs are also sites of major pre-mRNA processing events. The absence of nascent transcripts, RNA polymerase II, poly(A) polymerase, and hnRNPs within the clusters of interchromatin granules rules out the possibility that this domain plays a role in pre-mRNA transcription and polyadenylation; however, interchromatin granule-associated zones contain RNA polymerase II, TFIIH, and Sm complex of snRNPs and, after longer periods of BrUTP incubation, also Br-labeled RNA. Their role in nuclear functions still remains enigmatic. In the nucleolus, transcription sites occur in the dense fibrillar component. Our fine structural results show that PFs represent the major nucleoplasmic structural domain involved in active pre-mRNA transcriptional and processing events.
Structural analysis of the binding modes of minor groove ligands comprised of disubstituted benzenes
Resumo:
Two-dimensional homonuclear NMR was used to characterize synthetic DNA minor groove-binding ligands in complexes with oligonucleotides containing three different A-T binding sites. The three ligands studied have a C2 axis of symmetry and have the same general structural motif of a central para-substituted benzene ring flanked by two meta-substituted rings, giving the molecules a crescent shape. As with other ligands of this shape, specificity seems to arise from a tight fit in the narrow minor groove of the preferred A-T-rich sequences. We found that these ligands slide between binding subsites, behavior attributed to the fact that all of the amide protons in the ligand backbone cannot hydrogen bond to the minor groove simultaneously.
Resumo:
RNA helicases of the DEAD box family are involved in almost all cellular processes involving RNA molecules. Here we describe functional characterization of the yeast RNA helicase Dbp8p (YHR169w). Our results show that Dbp8p is an essential nucleolar protein required for biogenesis of the small ribosomal subunit. In vivo depletion of Dbp8p resulted in a ribosomal subunit imbalance due to a deficit in 40S ribosomal subunits. Subsequent analyses of pre-rRNA processing by pulse–chase labeling, northern hybridization and primer extension revealed that the early steps of cleavage of the 35S precursor at sites A1 and A2 are inhibited and delayed at site A0. Synthesis of 18S rRNA, the RNA moiety of the 40S subunit, is thereby blocked in the absence of Dbp8p. The involvement of Dbp8p as a bona fide RNA helicase in ribosome biogenesis is strongly supported by the loss of Dbp8p in vivo function obtained by site-directed mutagenesis of some conserved motifs carrying the enzymatic properties of the protein family.
Resumo:
rSNP_Guide is a novel curated database system for analysis of transcription factor (TF) binding to target sequences in regulatory gene regions altered by mutations. It accumulates experimental data on naturally occurring site variants in regulatory gene regions and site-directed mutations. This database system also contains the web tools for SNP analysis, i.e., active applet applying weight matrices to predict the regulatory site candidates altered by a mutation. The current version of the rSNP_Guide is supplemented by six sub-databases: (i) rSNP_DB, on DNA–protein interaction caused by mutation; (ii) SYSTEM, on experimental systems; (iii) rSNP_BIB, on citations to original publications; (iv) SAMPLES, on experimentally identified sequences of known regulatory sites; (v) MATRIX, on weight matrices of known TF sites; (vi) rSNP_Report, on characteristic examples of successful rSNP_Tools implementation. These databases are useful for the analysis of natural SNPs and site-directed mutations. The databases are available through the Web, http://wwwmgs.bionet.nsc.ru/mgs/systems/rsnp/.
Resumo:
The flavoprotein (R)-(+)-mandelonitrile lyase (MDL; EC 4.1.2.10), which plays a key role in cyanogenesis in rosaceous stone fruits, occurs in black cherry (Prunus serotina Ehrh.) homogenates as several closely related isoforms. Biochemical and molecular biological methods were used to investigate MDL microheterogeneity and function in this species. Three novel MDL cDNAs of high sequence identity (designated MDL2, MDL4, and MDL5) were isolated. Like MDL1 and MDL3 cDNAs (Z. Hu, J.E. Poulton [1997] Plant Physiol 115: 1359–1369), they had open reading frames that predicted a flavin adenine dinucleotide-binding site, multiple N-glycosylation sites, and an N-terminal signal sequence. The N terminus of an MDL isoform purified from seedlings matched the derived amino acid sequence of the MDL4 cDNA. Genomic sequences corresponding to the MDL1, MDL2, and MDL4 cDNAs were obtained by polymerase chain reaction amplification of genomic DNA. Like the previously reported mdl3 gene, these genes are interrupted at identical positions by three short, conserved introns. Given their overall similarity, we conclude that the genes mdl1, mdl2, mdl3, mdl4, and mdl5 are derived from a common ancestral gene and constitute members of a gene family. Genomic Southern-blot analysis showed that this family has approximately eight members. Northern-blot analysis using gene-specific probes revealed differential expression of the genes mdl1, mdl2, mdl3, mdl4, and mdl5.
Resumo:
The retinoid Z receptor beta (RZR beta), an orphan receptor, is a member of the retinoic acid receptor (RAR)/thyroid hormone receptor (TR) subfamily of nuclear receptors. RZR beta exhibits a highly restricted brain-specific expression pattern. So far, no natural RZR beta target gene has been identified and the physiological role of the receptor in transcriptional regulation remains to be elucidated. Electrophoretic mobility shift assays reveal binding of RZR beta to monomeric response elements containing the sequence AnnTAGGTCA, but RZR beta-mediated transactivation of reporter genes is only achieved with two property spaced binding sites. We present evidence that RZR beta can function as a cell-type-specific transactivator. In neuronal cells, GaI-RZR beta fusion proteins function as potent transcriptional activators, whereas no transactivation can be observed in nonneuronal cells. Mutational analyses demonstrate that the activation domain (AF-2) of RZR beta and RAR alpha are functionally interchangeable. However, in contrast to RAR and TR, the RZR beta AF-2 cannot function autonomously as a transactivation domain. Furthermore, our data define a novel repressor function for the C-terminal part of the putative ligand binding domain. We propose that the transcriptional activity of RZR beta is regulated by an interplay of different receptor domains with coactivators and corepressors.
Resumo:
The epidermal growth factor receptor (EGFR) and p185c-neu proteins associate as dimers to create an efficient signaling assembly. Overexpression of these receptors together enhances their intrinsic kinase activity and concomitantly results in oncogenic cellular transformation. The ectodomain is able to stabilize the dimer, whereas the kinase domain mediates biological activity. Here we analyze potential interactions of the cytoplasmic kinase domains of the EGFR and p185c-neu tyrosine kinases by homology molecular modeling. This analysis indicates that kinase domains can associate as dimers and, based on intermolecular interaction calculations, that heterodimer formation is favored over homodimers. The study also predicts that the self-autophosphorylation sites located within the kinase domains are not likely to interfere with tyrosine kinase activity, but may regulate the selection of substrates, thereby modulating signal transduction. In addition, the models suggest that the kinase domains of EGFR and p185c-neu can undergo higher order aggregation such as the formation of tetramers. Formation of tetrameric complexes may explain some of the experimentally observed features of their ligand affinity and hetero-receptor internalization.
Resumo:
For catalytic activity, nitric oxide synthases (NOSs) must be dimeric. Previous work revealed that the requirements for stable dimerization included binding of tetrahydrobiopterin (BH4), arginine, and heme. Here we asked what function is served by dimerization. We assessed the ability of individually inactive mutants of mouse inducible NOS (iNOS; NOS2), each deficient in binding a particular cofactor or cosubstrate, to complement each other by generating NO upon cotransfection into human epithelial cells. The ability of the mutants to homodimerize was gauged by gel filtration and/or PAGE under partially denaturing conditions, both followed by immunoblot. Their ability to heterodimerize was assessed by coimmunoprecipitation. Heterodimers that contained only one COOH-terminal hemimer and only one BH4-binding site could both form and function, even though the NADPH-, FAD-, and FMN-binding domains (in the COOH-terminal hemimer) and the BH4-binding sites (in the NH2-terminal hemimer) were contributed by opposite chains. Heterodimers that contained only one heme-binding site (Cys-194) could also form, either in cis or in trans to the nucleotide-binding domains. However, for NO production, both chains had to bind heme. Thus, NO production by iNOS requires dimerization because the active site requires two hemes.
Resumo:
The bithorax complex (BX-C) of Drosophila, one of two complexes that act as master regulators of the body plan of the fly, has now been entirely sequenced and comprises approximately 315,000 bp, only 1.4% of which codes for protein. Analysis of this sequence reveals significantly overrepresented DNA motifs of unknown, as well as known, functions in the non-protein-coding portion of the sequence. The following types of motifs in that portion are analyzed: (i) concatamers of mono-, di-, and trinucleotides; (ii) tightly clustered hexanucleotides (spaced < or = 5 bases apart); (iii) direct and reverse repeats longer than 20 bp; and (iv) a number of motifs known from biochemical studies to play a role in the regulation of the BX-C. The hexanucleotide AGATAC is remarkably overrepresented and is surmised to play a role in chromosome pairing. The positions of sites of highly overrepresented motifs are plotted for those that occur at more than five sites in the sequence, when < 0.5 case is expected. Expected values are based on a third-order Markov chain, which is the optimal order for representing the BXCALL sequence.