9 resultados para Anaerobic methanotrophic archaea-3, targed with ANME-3-1249 oligonucleotide FISH-probe
em National Center for Biotechnology Information - NCBI
Resumo:
Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route.
Resumo:
Genetic studies in chickens and receptor interference experiments have indicated that avian leukosis virus (ALV)-E may utilize a cellular receptor related to the receptor for ALV-B and ALV-D. Recently, we cloned CAR1, a tumor necrosis factor receptor (TNFR)-related protein, that serves as a cellular receptor for ALV-B and ALV-D. To determine whether the cellular receptor for ALV-E is a CAR1-like protein, a cDNA library was made from turkey embryo fibroblasts (TEFs), which are susceptible to ALV-E infection, but not to infection by ALV-B and ALV-D. The cDNA library was screened with a radioactively labeled CAR1 cDNA probe, and clones that hybridized with the probe were isolated. A 2.3-kb cDNA clone was identified that conferred susceptibility to ALV-E infection, but not to ALV-B infection, when expressed in transfected human 293 cells. The functional cDNA clone is predicted to encode a 368 amino acid protein with significant amino acid similarity to CAR1. Like CAR1, the TEF protein is predicted to have two extracellular TNFR-like cysteine-rich domains and a putative death domain similar to those of TNFR I and Fas. Flow cytometric analysis and immunoprecipitation experiments demonstrated specific binding between the TEF CAR1-related protein and an immunoadhesin composed of the surface (SU) envelope protein of subgroup E (RAV-0) virus fused to the constant region of a rabbit immunoglobulin. These two activities of the TEF CAR1-related protein, specific binding to ALV-E SU and permitting entry only of ALV-E, have unambiguously identified this protein as a cellular receptor specific for subgroup E ALV.
Resumo:
In Arabidopsis thaliana, trichome cells are specialized unicellular structures with uncertain functions. Based on earlier observations that one of the genes involved in cysteine biosynthesis (Atcys-3A) is highly expressed in trichomes, we have extended our studies in trichome cells to determine their capacity for glutathione (GSH) biosynthesis. First, we have analyzed by in situ hybridization the tissue-specific expression of the genes Atcys-3A and sat5, which encode O-acetylserine(thio)lyase (OASTL) and serine acetyltransferase (SAT), respectively, as well as gsh1 and gsh2, which encode γ-glutamylcysteine synthetase and glutathione synthetase, respectively. The four genes are highly expressed in leaf trichomes of Arabidopsis, and their mRNA accumulate to high levels. Second, we have directly measured cytoplasmic GSH concentration in intact cells by laser-scanning microscopy after labeling with monochlorobimane as a GSH-specific probe. From these measurements, cytosolic GSH concentrations of 238 ± 25, 80 ± 2, and 144 ± 19 μM were estimated for trichome, basement, and epidermal cells, respectively. Taking into account the volume of the cells measured using stereological techniques, the trichomes have a total GSH content more than 300-fold higher than the basement and epidermal cells. Third, after NaCl treatment, GSH biosynthesis is markedly decreased in trichomes. Atcys-3A, sat5, gsh1, and gsh2 mRNA levels show a decrease in transcript abundance, and [GSH]cyt is reduced to 47 ± 5 μM. These results suggest the important physiological significance of trichome cells related to GSH biosynthesis and their possible role as a sink during detoxification processes.
Resumo:
Cannibalism is widespread in natural populations of fishes, where the stomachs of adults frequently contain conspecific juveniles. Furthermore, field observations suggest that guardian males routinely eat offspring from their own nests. However, recent genetic paternity analyses have shown that fish nests often contain embryos not sired by the nest-tending male (because of cuckoldry events, egg thievery, or nest piracy). Such findings, coupled with the fact that several fish species have known capabilities for distinguishing kin from nonkin, raise the possibility that cannibalism by guardian males is directed primarily or exclusively toward unrelated embryos in their nests. Here, we test this hypothesis by collecting freshly cannibalized embryos from the stomachs of several nest-tending darter and sunfish males in nature and determining their genetic parentage by using polymorphic microsatellite markers. Our molecular results clearly indicate that guardian males do indeed consume their own genetic offspring, even when unrelated (foster) embryos are present within the nest. These data provide genetic documentation of filial cannibalism in nature. Furthermore, they suggest that the phenomenon may result, at least in part, from an inability of guardians to differentiate between kin and nonkin within their own nests.
Resumo:
The binding stoichiometry of gene V protein from bacteriophage f1 to several oligonucleotides was studied using electrospray ionization-mass spectrometry (ESI-MS). Using mild mass spectrometer interface conditions that preserve noncovalent associations in solution, gene V protein was observed as dimer ions from a 10 mM NH4OAc solution. Addition of oligonucleotides resulted in formation of protein-oligonucleotide complexes with stoichiometry of approximately four nucleotides (nt) per protein monomer. A 16-mer oligonucleotide gave predominantly a 4:1 (protein monomer: oligonucleotide) complex while oligonucleotides shorter than 15 nt showed stoichiometries of 2:1. Stoichiometries and relative binding constants for a mixture of oligonucleotides were readily measured using mass spectrometry. The binding stoichiometry of the protein with the 16-mer oligonucleotide was measured independently using size-exclusion chromatography and the results were consistent with the mass spectrometric data. These results demonstrate, for the first time, the observation and stoichiometric measurement of protein-oligonucleotide complexes using ESI-MS. The sensitivity and high resolution of ESI-MS should make it a useful too] in the study of protein-DNA interactions.
Resumo:
L125R is a mutation in the transmembrane helix C of rhodopsin that is associated with autosomal dominant retinitis pigmentosa. To probe the orientation of the helix and its packing in the transmembrane domain, we have prepared and studied the mutations E122R, I123R, A124R, S127R, L125F, and L125A at, and in proximity to, the above mutation site. Like L125R, the opsin expressed in COS-1 cells from E122R did not bind 11-cis-retinal, whereas those from I123R and S127R formed the rhodopsin chromophore partially. A124R opsin formed the rhodopsin chromophore (lambda max 495 nm) in the dark, but the metarhodopsin II formed on illumination decayed about 6.5 times faster than that of the wild type and was defective in transducin activation. The mutant opsins from L125F and L125A bound 11-cis-retinal only partially, and in both cases, the mixtures of the proteins produced were separated into retinal-binding and non-retinal-binding (misfolded) fractions. The purified mutant rhodopsin from L125F showed lambda max at 500 nm, whereas that from L125A showed lambda max at 503 nm. The mutant rhodopsin L125F showed abnormal bleaching behavior and both mutants on illumination showed destabilized metarhodopsin II species and reduced transducin activation. Because previous results have indicated that misfolding in rhodopsin is due to the formation of a disulfide bond other than the normal disulfide bond between Cys-110 and Cys-187 in the intradiscal domain, we conclude from the misfolding in mutants L125F and L125A that the folding in vivo in the transmembrane domain is coupled to that in the intradiscal domain.
Resumo:
Recent experiments have exposed significant discrepancies between experimental data and predictive models for DNA structure. These results strongly suggest that DNA structural parameters incorporated in the models are not always sufficient to account for the influence of sequence context and of specific ion effects. In an attempt to evaluate these two effects, we have investigated repetitive DNA sequences with the sequence motif GAGAG.CTCTC located in different helical phasing arrangements with respect to poly(A) tracts and GGGCCC.GGGCCC sequence motifs. Methods used are ligase-mediated cyclization and gel mobility experiments along with DNase I cutting and chemical probe studies. The results provide new evidence for curvature in poly(A) tracts. They also show that the sequence context in which bending and flexible sequence elements are found is an important aspect of sequence-dependent DNA conformation. Although dinucleotide models generally have good predictive power, this work demonstrates that in some instances sequence elements larger than the dinucleotide must be taken into account, and hence it provides a starting point for the appropriate modification and refinement of existing structural models for DNA.
Resumo:
Oligonucleotide analogs with N3'-->P5' phosphoramidate linkages bind to the major groove of double-helical DNA at specific oligopurine.oligopyrimidine sequences. These triple-helical complexes are much more stable than those formed by oligonucleotides with natural phosphodiester linkages. Oligonucleotide phosphoramidates containing thymine and cytosine or thymine, cytosine, and guanine bind strongly to the polypurine tract of human immunodeficiency virus proviral DNA under physiological conditions. Site-specific cleavage by the Dra I restriction enzyme at the 5' end of the polypurine sequence was inhibited by triplex formation. A eukaryotic transcription assay was used to investigate the effect of oligophosphoramidate binding to the polypurine tract sequence on transcription of the type 1 human immunodeficiency virus nef gene under the control of a cytomegalovirus promoter. An efficient arrest of RNA polymerase II was observed at the specific triplex site at submicromolar concentrations.
Resumo:
Five extremely thermophilic Archaea from hydrothermal vents were isolated, and their DNA polymerases were cloned and expressed in Escherichia coli. Protein splicing elements (inteins) are present in many archaeal DNA polymerases, but only the DNA polymerase from strain GB-C contained an intein. Of the five cloned DNA polymerases, the Thermococcus sp. 9 degrees N-7 DNA polymerase was chosen for biochemical characterization. Thermococcus sp. 9 degrees N-7 DNA polymerase exhibited temperature-sensitive strand displacement activity and apparent Km values for DNA and dNTP similar to those of Thermococcus litoralis DNA polymerase. Six substitutions in the 3'-5' exonuclease motif I were constructed in an attempt to reduce the 3'-5' exonuclease activity of Thermococcus sp. 9 degrees N-7 DNA polymerase. Five mutants resulted in no detectable 3'-5' exonuclease activity, while one mutant (Glul43Asp) had <1% of wild-type activity.