10 resultados para An eddy-resolving ocean model simulation

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modification of damaged replication forks is emerging as a crucial factor for efficient chromosomal duplication and the avoidance of genetic instability. The RecG helicase of Escherichia coli, which is involved in recombination and DNA repair, has been postulated to act on stalled replication forks to promote replication restart via the formation of a four-stranded (Holliday) junction. Here we show that RecG can actively unwind the leading and lagging strand arms of model replication fork structures in vitro. Unwinding is achieved in each case by simultaneous interaction with and translocation along both the leading and lagging strand templates at a fork. Disruption of either of these interactions dramatically inhibits unwinding of the opposing duplex arm. Thus, RecG translocates simultaneously along two DNA strands, one with 5′-3′ and the other with 3′-5′ polarity. The unwinding of both nascent strands at a damaged fork, and their subsequent annealing to form a Holliday junction, may explain the ability of RecG to promote replication restart. Moreover, the preferential binding of partial forks lacking a leading strand suggests that RecG may have the ability to target stalled replication intermediates in vivo in which lagging strand synthesis has continued beyond the leading strand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to elucidate the mechanism of membrane insertion and the structural organization of pores formed by Bacillus thuringiensis δ-endotoxin. We determined the relative affinities for membranes of peptides corresponding to the seven helices that compose the toxin pore-forming domain, their modes of membrane interaction, their structures within membranes, and their orientations relative to the membrane normal. In addition, we used resonance energy transfer measurements of all possible combinatorial pairs of membrane-bound helices to map the network of interactions between helices in their membrane-bound state. The interaction of the helices with the bilayer membrane was also probed by a Monte Carlo simulation protocol to determine lowest-energy orientations. Our results are consistent with a situation in which helices α4 and α5 insert into the membrane as a helical hairpin in an antiparallel manner, while the other helices lie on the membrane surface like the ribs of an umbrella (the “umbrella model”). Our results also support the suggestion that α7 may serve as a binding sensor to initiate the structural rearrangement of the pore-forming domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of atmospheric aerosols and regional haze from air pollution on the yields of rice and winter wheat grown in China is assessed. The assessment is based on estimates of aerosol optical depths over China, the effect of these optical depths on the solar irradiance reaching the earth’s surface, and the response of rice and winter wheat grown in Nanjing to the change in solar irradiance. Two sets of aerosol optical depths are presented: one based on a coupled, regional climate/air quality model simulation and the other inferred from solar radiation measurements made over a 12-year period at meteorological stations in China. The model-estimated optical depths are significantly smaller than those derived from observations, perhaps because of errors in one or both sets of optical depths or because the data from the meteorological stations has been affected by local pollution. Radiative transfer calculations using the smaller, model-estimated aerosol optical depths indicate that the so-called “direct effect” of regional haze results in an ≈5–30% reduction in the solar irradiance reaching some of China’s most productive agricultural regions. Crop-response model simulations suggest an ≈1:1 relationship between a percentage increase (decrease) in total surface solar irradiance and a percentage increase (decrease) in the yields of rice and wheat. Collectively, these calculations suggest that regional haze in China is currently depressing optimal yields of ≈70% of the crops grown in China by at least 5–30%. Reducing the severity of regional haze in China through air pollution control could potentially result in a significant increase in crop yields and help the nation meet its growing food demands in the coming decades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a procedure for the generation of chemically accurate computer-simulation models to study chemical reactions in the condensed phase. The process involves (i) the use of a coupled semiempirical quantum and classical molecular mechanics method to represent solutes and solvent, respectively; (ii) the optimization of semiempirical quantum mechanics (QM) parameters to produce a computationally efficient and chemically accurate QM model; (iii) the calibration of a quantum/classical microsolvation model using ab initio quantum theory; and (iv) the use of statistical mechanical principles and methods to simulate, on massively parallel computers, the thermodynamic properties of chemical reactions in aqueous solution. The utility of this process is demonstrated by the calculation of the enthalpy of reaction in vacuum and free energy change in aqueous solution for a proton transfer involving methanol, methoxide, imidazole, and imidazolium, which are functional groups involved with proton transfers in many biochemical systems. An optimized semiempirical QM model is produced, which results in the calculation of heats of formation of the above chemical species to within 1.0 kcal/mol (1 kcal = 4.18 kJ) of experimental values. The use of the calibrated QM and microsolvation QM/MM (molecular mechanics) models for the simulation of a proton transfer in aqueous solution gives a calculated free energy that is within 1.0 kcal/mol (12.2 calculated vs. 12.8 experimental) of a value estimated from experimental pKa values of the reacting species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presenilins have been implicated in the genesis of Alzheimer’s disease and in facilitating LIN-12/Notch activity during development. All presenilins have multiple hydrophobic regions that could theoretically span a membrane, and a description of the membrane topology is a crucial step toward deducing the mechanism of presenilin function. Previously, we proposed an eight-transmembrane-domain model for presenilin, based on studies of the Caenorhabditis elegans SEL-12 presenilin. Here, we describe experiments that support the view that two of the hydrophobic regions of SEL-12 function as the seventh and eighth transmembrane domains. Furthermore, we have shown that human presenilin 1 behaves like SEL-12 presenilin when analyzed by our methods. Our results provide additional experimental support for the eight-transmembrane-domain model of presenilin topology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder with impaired β-oxidation of very long chain fatty acids (VLCFAs) and reduced function of peroxisomal very long chain fatty acyl-CoA synthetase (VLCS) that leads to severe and progressive neurological disability. The X-ALD gene, identified by positional cloning, encodes a peroxisomal membrane protein (adrenoleukodystrophy protein; ALDP) that belongs to the ATP binding cassette transporter protein superfamily. Mutational analyses and functional studies of the X-ALD gene confirm that it and not VLCS is the gene responsible for X-ALD. Its role in the β-oxidation of VLCFAs and its effect on the function of VLCS are unclear. The complex pathology of X-ALD and the extreme variability of its clinical phenotypes are also unexplained. To facilitate understanding of X-ALD pathophysiology, we developed an X-ALD mouse model by gene targeting. The X-ALD mouse exhibits reduced β-oxidation of VLCFAs, resulting in significantly elevated levels of saturated VLCFAs in total lipids from all tissues measured and in cholesterol esters from adrenal glands. Lipid cleft inclusions were observed in adrenocortical cells of X-ALD mice under the electron microscope. No neurological involvement has been detected in X-ALD mice up to 6 months. We conclude that X-ALD mice exhibit biochemical defects equivalent to those found in human X-ALD and thus provide an experimental system for testing therapeutic intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used plants as an in vivo pathogenesis model for the identification of virulence factors of the human opportunistic pathogen Pseudomonas aeruginosa. Nine of nine TnphoA mutant derivatives of P. aeruginosa strain UCBPP-PA14 that were identified in a plant leaf assay for less pathogenic mutants also exhibited significantly reduced pathogenicity in a burned mouse pathogenicity model, suggesting that P. aeruginosa utilizes common strategies to infect both hosts. Seven of these nine mutants contain TnphoA insertions in previously unknown genes. These results demonstrate that an alternative nonvertebrate host of a human bacterial pathogen can be used in an in vivo high throughput screen to identify novel bacterial virulence factors involved in mammalian pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the role of 2′-OH groups in the specific interaction between the acceptor stem of Escherichia coli tRNACys and cysteine-tRNA synthetase. This interaction provides for the high aminoacylation specificity observed for cysteine-tRNA synthetase. A synthetic RNA microhelix that recapitulates the sequence of the acceptor stem was used as a substrate and variants containing systematic replacement of the 2′-OH by 2′-deoxy or 2′-O-methyl groups were tested. Except for position U73, all substitutions had little effect on aminoacylation. Interestingly, the deoxy substitution at position U73 had no effect on aminoacylation, but the 2′-O-methyl substitution decreased aminoacylation by 10-fold and addition of the even bulkier 2′-O-propyl group decreased aminoacylation by another 2-fold. The lack of an effect by the deoxy substitution suggests that the hydrogen bonding potential of the 2′-OH at position U73 is unimportant for aminoacylation. The decrease in activity upon alkyl substitution suggests that the 2′-OH group instead provides a monitor of the steric environment during the RNA–synthetase interaction. The steric role was confirmed in the context of a reconstituted tRNA and is consistent with the observation that the U73 base is the single most important determinant for aminoacylation and therefore is a site that is likely to be in close contact with cysteine-tRNA synthetase. A steric role is supported by an NMR-based structural model of the acceptor stem, together with biochemical studies of a closely related microhelix. This role suggests that the U73 binding site for cysteine-tRNA synthetase is sterically optimized to accommodate a 2′-OH group in the backbone, but that the hydroxyl group itself is not involved in specific hydrogen bonding interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental time series for a nonequilibrium reaction may in some cases contain sufficient data to determine a unique kinetic model for the reaction by a systematic mathematical analysis. As an example, a kinetic model for the self-assembly of microtubules is derived here from turbidity time series for solutions in which microtubules assemble. The model may be seen as a generalization of Oosawa's classical nucleation-polymerization model. It reproduces the experimental data with a four-stage nucleation process and a critical nucleus of 15 monomers.